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Profile-based protein-sequence analysis algorithms comprise some of the most powerful and user-friendly methods for exploring protein se-
quences to determine their structure, function, and/or evolution (1-4). PSI-BLAST (5, 6) and rps-BLAST (7) are two of the most popular pro-
file-based algorithms (~1,120 references to date), and have exceptional utility in the identification of homology between proteins, particularly 
for biological scientists who do not specialize in computational approaches.  However, when the performance of these algorithms is compared 
to other methods [e.g. support-vector machine learning (SVM) (8), hidden-Markov models (HMMs) (9)], they often underperform in identi-
fying the aforementioned protein properties (3, 9-11). We have previously demonstrated that the utility of BLAST algorithms can be signifi-
cantly improved by: (i) adaptations to the profile libraries employed, (ii) adjustments to output formats, and (iii) alterations to BLAST 
algorithm itself (4, 6, 12-14). We present here Adaptive-BLAST (Ada-BLAST), which provides a simple user-defined platform for measuring 
and analyzing primary amino acid sequences. Within this platform, we developed a series of local BLAST applications (apps) that take ad-
vantage of the speed and sensitivity afforded by BLAST, while allowing for maximal user-definitions and flexible visualization. We tested the 
efficacy of these apps in control experiments, studying fold-recognition, in which we obtained >90% accuracy in highly divergent sequences 
(>25% identity). In addition, these same apps were proficient in classifying transmembrane proteins, identifying structural/functional deter-
minants of ion-channels/receptors, and informing structural modeling algorithms. Indeed, these Ada-BLAST informed-structural models were 
useful in guiding our experimental research on the N-terminus of Transient Receptor Potential ion-channels (TRPs).  Taken together, we 
propose that Ada-BLAST provides a powerful computational tool that is accessible to bench-scientists and computational biologists alike. The 
codes for Ada-BLAST are publicly available at: http://empathy.rcc.psu.edu/. 

Keywords: BLAST, Ada-BLAST, rps-BLAST, PSI-BLAST, twilight-zone, TRP channels, ankyrin repeats, transmembrane prediction, protein 
function, protein evolution, protein structure, homology modeling, TRPC3, TRPV4, TRP_2, VAMP, SNARE, fusogenic, lipid-binding. 

1. Introduction 

One of the major challenges that biologists face is identify-
ing the relationships between highly divergent protein se-
quences. Although many methods (e.g., (12, 16, 17)) have 
attempted to address the problem, the challenge remains 
unsolved. In general, when pairwise sequence alignments 
between protein sequences fall below 25% identity, statistical 
measurements do not provide support for clear phylogenetic 
relationships, structural features, or protein function(s) de-
spite intensive research in this area (11, 18-20). 

BLAST algorithms are powerful and the institutional “web-
based” versions are popular among bench-scientists (21). 
Although a large amount of highly informative data is col-

lected by BLAST, they are not easily accessed or formatted for 
use with other algorithms. This is exemplified by perfor-
mance evaluations for homology detection, where PSI-
BLAST underperforms when used as an analysis algorithm 
(3, 9, 11, 20). Our previous studies suggested that user-
defined libraries of Position Specific Scoring Matrices 
(PSSMs), modifications of BLAST algorithms and settings 
(e.g. e-value, substitution matrices, sequence-embedding), as 
well as format changes to BLAST outputs are all useful in 
increasing the performance of BLAST, particularly for highly-
divergent sequences (4, 12, 13, 15, 22). 

These findings form the basis of our vision for Adaptive 
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BLASTing (13), an approach which is designed to maximize 
user-defined variables and output formats to augment the 
utility of BLAST data, while maintaining computational ease 
and efficiency. Ada-BLAST is designed to take any idea from 
experimentalists and to provide a computational tool to ex-
plore his/her idea (Fig. 1). Ada-BLAST begins by identifying 
protein sequences that contain a relevant structural, func-
tional, and/or evolutionary characteristic to ones question of 
interest.  Following, an rps-BLAST compatible PSSM library 
of these sequences can be created and amplified using PSI-
BLAST. Query sequences of interest can then be aligned with 
these libraries with user-defined variants of rps-BLAST, each 
of which has specific advantages (13). We have written simple 
apps that allow for the various outputs that rps-BLAST pro-
vides (e.g. % identity, % coverage, pairwise alignments) to be 
formatted for use by similarity and distance matrix algo-
rithms, as well as a plethora of visualization and alignment 
algorithms (6, 13, 14). These format adjustments make Ada-
BLAST data highly interoperable, providing a straightforward  

mechanism for networking multiple algorithms under the 
umbrella of BLAST. In the present manuscript, we demon-
strate the utility that is imparted to BLAST by user-defined 
applications and suggest that a wealth of information exists in 
protein sequences that have yet to be fully realized. 

2. Methods 

2.1 Ada-BLAST Logic 

In our previous studies, we determined that low-identity 
alignments can be informative to laboratory experiments at 
multiple scales (e.g., whole protein, single protein domain 
and single amino acid). We have used these analyses: (i) to 
reconstruct evolutionary histories (4, 12, 14), (ii) to identify 
functions in domains of unknown function (4, 23-25), (iii) to 
classify structural homologues of high sequence divergence 
(4, 13),  and (iv) to inform our biochemical experimentation 
by isolating key amino acids important to protein function 
(22-26). We present here the logic behind the user-defined 
processes in Ada-BLAST platform.  

2.2 User-defined PSSM Libraries 

It is well-established that PSSMs contain more information 
that single sequences.  This is due to the fact that PSSMs con-
tain a frequency distribution of substitutions inherent to ho-
mologous yet divergent sequences (3, 5, 20). When large 
PSSM libraries are constructed, they can be quite powerful; 
however, it is often the case that institutional PSSM libraries, 
such as those found on NCBI, are not easily adapted to search 
for specific protein characteristic. We have created an app 
that allows for the easy creation of user-defined PSSM librar-
ies that are formatted for use in rps-BLAST.  The basic idea 
underlying our method begins by compiling a set of PSSMs 
that the query sequence is compared to. These profiles can be 
obtained from any protein-sequence knowledge-base source 
(e.g., Protein Data Bank, Pfam, SMART, NCBI Conserved 
Domain Database (CDD)) (7, 27-29), or they can be locally 

generated by using PSI-BLAST(5). Our studies demonstrate 
that when PSSMs are generated using PSI-BLAST (e-value= 
10-6, 6 iterations), nearly all of the sequences returned are 
homologous to the query utilized (6, 12). In this way, a user-
defined PSSM library can be rapidly constructed that is en-
riched for the protein characteristic of interest. 

2.3User-defined rps-BLAST 

Our previous results demonstrate that low-identity align-
ments obtained from rps-BLAST at insignificant e-values can 
be informative (as high as e-value=1010) (4, 6, 15). Our results 
also demonstrate that the removal of e-value using sequence 
embedding can also be a beneficial local BLAST app (4, 13). 
Therefore, we have streamlined Ada-BLAST to allow for mul-
tiple variations of rps-BLAST to be used, such that multiple 
datasets can be obtained from the same set of query sequenc-
es. 
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Figure 1. Ada-BLAST Concept. This model depicts the logic behind 
our user-defined interface. The process begins by a scientist decid-
ing on specific protein characteristics that they wish to measure and 
collecting sequences which are known to have these characteristics. 
Following, these sequences can be amplified and converted into an 
rps-BLAST compatible database using PSI-BLAST. Each library can 
then be entered into a user-defined rps-BLAST interface that allows 
the user to easily control statistical thresholds and settings. The out-
put from rps-BLAST can then be formatted into either alignment 
outputs or matrix outputs such that these data are interoperable 
with a multitude of other analysis and visualization programs. 
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In addition to native rps-BLAST, we utilize embedded 
alignment algorithm (i.e., embedded rps-BLAST) in our plat-
form. With respect to embedded alignments, we utilize a 
single domain PSSM database for pairwise comparisons. In 
brief, we modify the query sequence with a “seed” from the 
PSSM, creating a consistent initiation site. The “seeds” are 
generated from the profiles by taking a portion (e.g., 10% in 
this study, based on the results from our previous studies (12, 
13)) of the PSSM sequence (e.g., from the N-terminus or C-
terminus). This strategy was designed to amplify and encode 
the alignments possible for any given query sequence. Instead 
of a sliding window, we utilized a sliding “seed”, a procedure 
that is similar yet inverse to the embedding strategies em-
ployed by Henikoff and Henikoff (1). Since BLAST algo-
rithms are based on a “hit and the extension of the hit” 
approach, the embedded “seed” creates a consistent initiation 
site that allows rps-BLAST to extend an alignment even be-
tween highly divergent sequences. Next, we filter out the 
alignments from rps-BLAST using the thresholds of percent-
age identity and percentage coverage (i.e., the alignment 
length as a function of the profile length) to remove noisy or 
random alignments.  

Despite the potential of the original embedded alignment 
strategy for answering a diverse set of biological questions (4, 
6, 12, 15), their computational costs made them prohibitively 
expensive. To address this challenge, we created a novel se-
quence alignment app that is as sensitive as our previous 
methods but orders of magnitude faster (see (13) for com-
plete method). Our Ada-BLAST sequence embedding app 
exploits the similarity among embedded sequences to adap-
tively avoid expensive computations. Instead of inserting a 
seed into every position of a query sequence, Ada-BLAST 
embeds a seed at the query positions where the seed is likely 
to be extended to an alignment  

2.4 User-defined rps-BLAST Outputs 

Similar to phylogenetic profiles or kernel approaches (30-
32), Ada-BLAST can represent a protein as a vector where 
each entry quantifies the existence of alignments with a given 
PSSM as measured via alignment algorithm of choice (4, 13). 
This procedure can be readily adapted to make an unbiased 
comparison between a series of query sequences by subjecting 
them to the same screening analysis with the same set of 
PSSM sequences. Our previous studies determined that % 
identity, % coverage, and in the case of embedded rps-
BLAST, # of hits, are all informative measures which we parse 
from alignments. In addition, we collect the start and stop 
position for every alignment above a given threshold which 
are informative for the detection of domain boundaries (4, 
23, 33). We also collect the alignment data for each library to 
obtain positional data which reflects the conservation of ami-
no-acids from alignments obtained with a given library (see 
Methods for complete description). 

We have developed apps which collect the aforementioned 
data and provide it in two formats which are highly interop-
erable with matrix and alignment algorithms. For matrix 

algorithms, we represent each query sequence (N) as a vector 
of non-negative numbers (in our case comprised of identity, 
coverage, and/or # of hits) in M dimensions (M= # of 
“PSSMs” tested). This N×M data matrix can then be used to 
create a tree of relationships using hierarchical clustering on 
the basis of any similarity metrics (e.g. Pearson’s correlation 
(34), multi-dimensional scaling (35), etc) between each query 
sequence. Importantly, any output obtained from rps-BLAST 
(e.g. bit score, positional frequency, etc) can easily be incor-
porated into this matrix using our user-defined apps; howev-
er, we have yet to determine the information content of these 
other variables. In addition, these same data can also be con-
verted to a distance matrix (N×N) using Euclidian distances, 
making the output appropriate for measuring evolutionary 
relationships (4, 12, 14).  

The alignment information we obtain with our apps allow 
for alignment boundaries to easily mapped and analyzed 
using a variety of graphing algorithms. In addition, we have 
developed an app which translates our data into a WebLogo 
compatible output (36) for visualization of amino-acid com-
position (see Methods). Importantly, the outputs presented 
here are only the ones we have considered and applied; for 
the computer savvy user, apps for multiple other outputs can 
be envisioned, coded and easily added to the Ada-BLAST 
platform. 

3. Results 

3.1 Applications for Fold Classification 

As a control for our platform, we performed a fold-
recognition assay using 534 sequences from 61 unique fold 
groups obtained from the “twilight zone” SABmark reference 
dataset (10). In this dataset, all structurally resolved sequenc-
es are <25% identity to one another, making it a challenging 
dataset.  Indeed, our first attempts to resolve this dataset us-
ing the NCBI CDD PSSM library obtained an accuracy of 
only ~30% at a 1 in 100 false-positive rate (4). To test whether 
user-defined libraries could improve our performance, we 
generated 61 fold-specific PSSM libraries using 3,995 PDB 
reference sequences, all of which comprise TZ-SABmark 
queries in our dataset. These queries contribute, on average, 
~3.6 PSSMs for our fold-specific libraries (Fig. S1a). 60 TZ-
SABmark sequences that did not create PSSMs at the settings 
used (see Methods) serve as blind-test sequences (i.e. these 
sequences do not have self-generated PSSMs in our fold-
specific libraries), while other 474 sequences serve as control 
sequences. All TZ-SABmark sequences were represented as a 
vector of fold-specific scores (see Methods) to be related in 
our platform.  

In Figure 2a, we present a receiver operating characteristic 
(ROC)-curve for TZ-SABmark using these libraries at two 
different thresholds (see Fig. S1b,c for different thresholds). 
At a false positive rate 0.001, we achieved sensitivity ~0.97 
and ~0.94 for e-values of 0.01 and 1010 respectively. As ex-
pected, the pairwise % identity between TZ-SABmark test 
sequences and their self-generated PSSMs are low identity 
(~60% of the alignments are <25% identity). Nevertheless, the  



Yoojin Hong et al., 2010 | Journal of Integrated Omics 

   88-101: 91 

 

Figure 2. Fold Recognition and Fold Clustering with the Fold-specific Libraries. (a) ROC curves of Ada-BLAST. TZ-SABmark queries were 
encoded in a vector using rps-BLAST alignments of e-value 0.01 and 1010 with 61 fold-specific PSSM libraries (see the Supplemental Meth-
ods). (b) Hierarchical clustering of TZ-SABmark queries (left dendrogram: e-value 1010, 80% coverage, right dendrogram: e-value 0.01, no 
coverage threshold). The queries which could not be clustered with their related folds using Pearson’s correlation 0.5 as a cutoff value (red 
dotted line) are in red (mis-clustered queries exclusively in either dendrogram) or blue (mis-clustered in common). The queries, which could 
not cluster with any other sequence as forming an individual cluster, are marked in green boxes. (c) Comparison of accuracy of e-value 0.01 
and e-value 1010, and expected accuracy when assigning queries into the cluster with higher correlation from e-value 0.01 or 1010 (e-val 0.01 
+ e-val 1010 expected) for either of 474 test or 60 control TZ-SABmark queries. (d) By hierarchical clustering of TZ-SABmark queries (e-value 
1010, 80% coverage) encoded with the 61 fold-specific libraries, d1d4ua1 is correctly clustered with its true fold group without self-generated 
PSSMs. (e) Predicted a.6 SCOP fold region (blue) in the full length sequence 1D4U:A. Red line annotates an actual Putative DNA-binding 
domain (a.6) SCOP fold region in the protein. SCOP defined two domains in 1D4U:A, such as d1d4ua1 (a.a.37-111) which is one of TZ-
SABmark queries, and d1d4ua2 (a.a.1-36). By SCOP classification, d1d4ua1 is classified as a.6 fold while d1d4ua2 is classified as Glucocorti-
coid receptor-like (g.39) fold. For regional prediction, Ada-BLAST embedded alignment was run with 10% seed size and 60% coverage and 
10% identity thresholds using Putative DNA-binding domain (a.6) fold-specific PSSM library. 
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pairwise alignments collected with both of the e-value 
thresholds (0.01 and 1010) for these PSSM libraries are ex-
tremely divergent (Fig. S2). 

We next sought to determine if hierarchical clustering (34) of 
TZ-SABmark encoded by our fold-specific PSSM libraries 
could rebuild appropriate SCOP fold classification (Fig. 2b). 
Let accuracy be % of TZ-SABmark queries clustered with the 
sequences from their respective fold groups. We calculated 
accuracy separately for the control and test datasets (Fig. 2c). 
For the control sequences, we observe 98.9% and 99.6% accu-
racy at e-value 1010 and 0.01 respectively. If we assign queries 
into the cluster with higher correlation from e-value 0.01 or 
1010 (i.e. comparative measurement), we obtain 99.8% accu-
racy (e-val 0.01+e-val 1010 expected in Fig. 2c). For the 60 test 
sequences, we observe 83.3%, 86.7%, and 90% accuracy at e-
value 1010, 0.01, and the comparative measurement respec-
tively. The examples which are properly clustered by compar-
ative measurement are given in Figure S3. 

We analyzed TZ-SABmark queries which cannot be clus-
tered with their related fold sequences with Pearson’s correla-
tion 0.5 cutoff at e-value 0.01 and 1010 respectively (queries in 
red or blue in Fig 2b). Surprisingly, 9 out of the 10 queries at 
e-value 0.01 are not clustered with any other sequences (que-
ries in green boxes in Fig 2b-right). It suggests that 99% of the 
TZ-SABmark queries clustered with at least a single other 
sequence can be accurately predicted by the fold of the se-
quences in the same cluster. By comparative measurement 
between e-value 0.01 and 1010 as previously described, we 
obtain 98.9% accuracy for the entire TZ-SABmark queries 
because only 6 queries do not correlate with their related fold 
group clusters in either condition. Importantly, these experi-
ments demonstrate that information collected from tradi-
tionally insignificant e-values can be informative. 

3.2 Applications for Transmembrane Protein Classification 

Based on previous results, we next tested whether our ma-
trix outputs can be used to classify transmembrane proteins. 
All transmembrane proteins are similar in that they have, for 
the most part, highly hydrophobic helices that transverse 
lipid-bilayers, yet are all functionally unique. In general, the 
similarity measurements between two protein sequences are 
typically done by directly aligning the two sequences, one 
against the other. However, using Ada-BLAST, we compute 
an N×M matrix for all query sequences using the same PSSM 
library (4, 13). 

To test the efficacy of our N×M matrices built using em-
bedded alignments or alignments over a range of rps-BLAST 
e-value thresholds, we curated a set of transmembrane con-
taining proteins from a range of different protein families 
(e.g. voltage-gated Ca2+, K+, and Cl- channels, calcium-
activated K+ channels, cyclic-nucleotide gated channels, tran-
sient receptor potential channels (TRPs), receptor tyrosine 
kinases, G-protein coupled receptors (GPCRs), transporters 
and exchangers). Each of these 74 sequences was analyzed 
using both query-embedded and native rps-BLAST using our 
integral lipid-binding database (ILB-DB) which contains 

38,155 PSSMs we generated using PSI-BLAST. The results 
from this analysis were encoded into an N×M matrix with 
composite scores (see Methods), and were then subjected to 
hierarchical clustering as above. In Figures 3a, we report the 
condition (e-value=100) that achieves the highest degree of 
classification (see Figure S4,5 for Ada-BLAST embedded and 
e-value=0.01 clusters, respectively). 

While the classifications are not perfect, all three clusters 
show robust measures for pairing related sequences.  Intri-
guingly, several clades of potassium and cyclic-nucleotide 
gated channels are close to TRP channels. All three of these 
groups have 6 TMs and are thought to be structurally related 
(37).  Importantly, these fold/function-specific subgroups are 
not classification hierarchies in our fold-specific transmem-
brane library, but emerge as a function of the N×M matrix 
analysis. 

When using Pearson’s correlation coefficient 0.5 as a 
threshold, Ada-BLAST data at e-value=100 achieves 15 clus-
ters (42 proteins) whose proteins have all the same function 
while embedded data has 12 such clusters (37 proteins). In 
data not shown, we observe that both the Pearson’s correla-
tion values and the overall topology are compromised when 
measured at e-value=1010. Taken together, this data demon-
strates (i) that the classification app has utility, and (ii) that 
PSSM libraries generated from proteins having a similar 
characteristic yet diverse function can be used to cluster pro-
tein families.  Indeed, these results support our previous stud-
ies wherein we used PSSM libraries constructed using diverse 
lipid-binding and nucleic acid-binding folds to identify bio-
logically relevant domains (6, 15, 24, 38). 

3.3 Applications for Identifying Secondary Structural Elements 
and Amino-acid Conservation 

As a final control, we conducted analyses on a structurally 
resolved (X-ray Crystallography) transmembrane protein, 
Bovine Rhodopsin (PDB: 1F88) in order to determine the 
information content contained in a pure population of em-
bedded alignments and information obtained over a range of 
e-values using native rps-BLAST (7). Supplemental Figure 11 
depicts the output of rps-BLAST (e-value threshold 0.01) for 
the domain architecture of 1F88. Notably, rps-BLAST returns 
alignments for multiple PSSMs defined as Serpentine type 7 
TM domains. Our theories on structurally/functionally relat-
ed PSSM libraries predict that additional information below 
the accepted statistical thresholds can utilized to define, with 
higher resolution, domain boundaries and secondary struc-
tural elements. 

This hypothesis was tested and the performance was evalu-
ated against Ada-BLAST and the Hidden Markov Models 
(TMHMM) (Fig 4a-c, Fig S7) (39). While neither TMHMM 
nor Ada-BLAST accurately model the entire crystal structure, 
we observe several interesting features. For example, several 
of the membrane-spanning helices are interrupted by loop 
regions that are not identified by TMHMM. Indeed, the C-
terminus of 1F88 contains 3 small helices, the last of which is 
a bent-helix that is believed to be parallel to the membrane 
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(aa 288-348, Fig 3c). Various Ada-BLAST settings show mul-
tiple views of these smaller helices with embedded data hav-
ing the highest signal. Another region of interest is contained 
between aa 91-111, which is a loop in the crystal structure, 

but is predicted to be a short helix by Ada-BLAST. We theo-
rize that this loop may be, under native conditions, a bent-
helix similar to other regions in the protein. Our amino acid 
conservation data also demonstrates that 6 of the top 8 scor-

 
Figure 3. A Classification based on Heirarchical Clustering. 74 sequences representing multiple classes of transmembrane containing proteins 
were hierarchically clustered and visualized by Cluster and Treeview [34]. The dotted lines represent the correlation scores derived from the 
analysis. Alignments for the ILB-DB PSSMs were derived at e-value=102 threshold (see Supplemental Figure 9-10 for additional clusters of 
other Ada-BLAST settings). 
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ing residues (with higher scores representing increased con-
servation) compared between different Ada-BLAST views 
surround the chromophore binding site, which must be con-
served for vision to occur (Fig 4b). Taken together, our con-
trol experiments provide support for the idea that Ada-
BLAST can be implemented to investigate any protein se-
quence, while providing outputs that are interoperable with a 
variety of analysis algorithms. 

3.4 Using Ada-BLAST to investigate Transient Receptor Poten-
tial Channels 

As stated in the introduction, we created the Ada-BLAST 
interface with bench-scientists in mind. A primary focus of 
our research group is TRP channel physiology, in particular 
vertebrate TRPC3, whose physiological role has yet to be 
clearly elucidated (23, 24, 38, 40).  The TRP channel super-
family is well-known for being involved in all areas of sensory 
perception, as well as variety of other biological functions (41, 
42). The TRPC (canonical) channels are most closely related 
to the TRP channel found in drosophila eye which are re-

quired for vision (43). Although these channels have been 
extensively studied, little structural data exists for these chan-
nels.  This lack of structural data can be confounding when 
seemingly disparate results are obtained from functional as-
says where mutational analysis is performed. Further, most of 
the functional data obtained from cellular studies cannot be 
predicted using popular institutional sequence analysis algo-
rithms; thus, most TRP channel sequences have little func-
tional annotation as well. When the human TRPC3 sequence 
is searched against NCBI CDD using rps-BLAST (e-
value=0.01), alignments for ankyrin repeats, the ion-channel, 
and the TRP_2 domain are identified (Fig 5, top). These re-
sults are presented in a graphical output that allows for the 
individual alignments to be observed (Fig 5, middle), and 
provides links to multiple sources of information for these 
domains.  

While informative, these data cannot easily be extracted in 
a format that can be used for quantitative comparisons. Con-
versely, our data outputs provides the positional conservation 
data obtained using our TM and ankyrin fold-specific data-

 
Figure 4. Ada-BLAST analysis of Bovine Rhodopsin.  (a) The primary amino acid sequence of 1F88 was run against ILB-DB in Ada-BLAST 
(embedding setting). This graph depicts normalized raw data (right axis) compared with the data smoothed by Fast Fourier Transform (set-
ting=8). These data were normalized by subtrating the average score across the full length sequence from each amino acid position. (see Sup-
plemental Figure 11-12 for rps-BLAST and baseline corrected Ada-BLAST data) (b) Positional Data for TM was compared between Ada-
BLAST settings (embedded, e=0.01, e=100, and e=1010). Residues which appeared in 4/4, 3/4, and 2/4 settings are annotated to the structure of 
1F88. The majority of the conserved high-scoring residues are in and around the known chromophore binding site. (c) The structure of 1F88 
amino acids 288-322 are shown along side the positional data from Ada-BLAST. Interestingly the Ada-BLAST data correlates with transition 
points in this structural region which bends into three helical subunits. (d) This panel depicts an Ada-BLAST sequence Logo for TM DB (aa 
290-299) as an additional view of the postional data. 
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base (ANK DB, 449 profiles) for TRPC3 (Figure 5, bottom). 
When compared to NCBI, our embedded app data suggests 
that the both the channel domain boundaries and the ankyrin 
repeat boundaries are under-estimated. In Figure S8-9, we 
compare our ILB-DB results to those obtained using TM-
HMM for human TRPC3 and TRPV5. Although the results 
are very similar, TM-HMM predicts a transmembrane helix 
in a region of TRPC3 that is known to comprise the TRP-box, 
which is a peripheral lipid-binding domain, and thus may be 
an error. In both instances, Ada-BLAST predicts a larger 
channel region than is annotated by rps-BLAST, which ac-
cords with the current ideas in the literature (37). 

Similar to our channel boundary predictions, our ANK-DB 
results suggest that the number of ankyrin repeats in the N-
terminus of TRPC3 are underestimated by rps-BLAST (Fig 5, 
green). To investigate whether this results could be accurate, 
we compared the results we obtained for TRPC3 with the 
results we obtained for the structurally resolved ankyrin re-
peats in TRPV6 (Fig 6a) using our ANK-DB.  When the over-
lapping alignments we obtain are plotted, six clear peaks can 
be observed, which accord with the 6 ankyrin repeats in the 
structure (Fig 6b). The amino-acid conservation data (Fig 6a), 

suggests that repeats 3 and 4 are highly conserved, while re-
peats 1-2 and 5-6 are less conserved. A very similar pattern 
for both the overlapping alignment and amino-acid conserva-
tion data is obtained for TRPC3 (Fig 6c). 

As these alignments extend from amino-acid 1-280 in hu-
man TRPC3, this suggests that the TRP_2 domain (~aa 194-
260) in TRPC3, which has been implicated in peripheral li-
pid-binding and vesicle fusion (23, 44), is comprised of 
ankyrin repeats. By homology, this also suggests that the 
TRP_2 domain is contained in TRPV channels, which is gen-
erally not observed in these channels. To investigate this hy-
pothesis, we aligned the Ada-BLAST-defined region of 
TRPC3 which was positive for ankyrin alignments with the 
chicken TRPV4 ankyrin repeat sequence (which has been 
structurally resolved) using MUSCLE (45). Although the 
overall alignment is low identity (~13%), the resulting struc-
tural model obtained from Modeller (46) using the MUSCLE 
alignment was high-quality (Fig 6d, 7). The best model we 
obtained (1470.32458 molpdf score, -21539.84961 DOPE 
score, and 0.33691 GA341score) was structurally aligned to 
the TRPV4 structure using MAMMOTH (47) (Fig 6d). The 
TRPC3 model mirrors the carbon backbone of the TRPV4 

 
Figure 5. rps-BLAST and Ada-BLAST analysis of TRPC3. (top) NCBI CDD rps-BLAST output for TRPC3. Three domains are detected as e-
value =0.01 (TRP_2, ankyrin, channel). An alignment for each of these domains is also generated. (bottom) Ada-BLAST (embedded, rps-
BLAST) amino-acid conservation output for TRPC3 measured with ILB DB (white,red) and ANK DB (green,yellow). We observe a clear 
ankyrin signal in most of the N-terminus of TRPC3, unlike rps-BLAST.  In addition, Ada-BLAST predicts that the channel domiain is also 
underestimated by rps-BLAST, which is supported by TM-HMM (see Supplemental Fig 13). 
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structure in the helical portions of the ankyrin repeats, with 
the loop regions having a lower correlation; this may be ex-
pected if the function of this domain is not conserved be-
tween TRPC3 and TRPVs. Of interest, the known TRP_2 
domain in TRPC3 corresponds to ankyrin repeats 5 and 6 in 
the TRPV4 structure (Fig 6d), suggesting that these ankyrin 
repeats may be involved in the lipid-regulation of TRPVs. 

This TRPC3 model allows us to evaluate previous data on 
this region of the channel with a new perspective. For exam-
ple, we previously reported that amino-acids 1-48 of TRPC3 
comprised a “PH-like” domain, so termed because this region 
can bind to the partial C-terminal PH-domain (PH-c) con-
tained in phospholipase C-γ (PLCγ) and comprises an inter-
molecular lipid-binding domain (38). Zhang and colleagues 
(48) reported that, based on NMR studies, this region does 
not adopt a PH-fold; a result which our current model sup-
ports (Fig. 7). Interestingly, the site we identified as the PLCγ 
binding site (amino-acids 40-48) comprises an exposed 
loop/pocket between ankyrin repeats 1 and 2. 

Another interesting portion of the TRPC3 N-terminus is 
contained between amino-acids 121-161 which was demon-
strated by us and others to bind SNARE proteins, in particu-

lar synaptotagmin (i.e. V-snare, vesicle-associated membrane 
protein VAMP-1), which regulates channel trafficking (23, 
44). These amino-acids in our TRPC3 model create a large 
loop between ankyrin repeats 3 and 4 (Fig 7). A clear loop 
resembling a hand can be observed in these loops, which we 
hypothesize is the binding site for VAMP. When we modeled 
the T-SNARE binding helix of VAMP into this pocket, we 
observe that the pocket is sufficiently large to accommodate 
such a helix; thus it appears this is a reasonable hypothesis to 
pursue. In addition, the structural model predicts that the 
VAMP-1 binding pocket is between ~ a.a. 140-152 in TRPC3, 
which would limit the putative binding region determined by 
the biochemical data. 

4. Experimental Investigation  

The aforementioned study by Zhang and colleagues sug-
gested that the region we identified as the binding domain for 
the PH-c domain of PLCγ was incorrect as they could not 
achieve binding of this purified fragment with a purified 
fragment of TRPC3 (a.a. 1-52).  Although our study did 
demonstrate binding to a very similar fragment in yeast-2-
hybrid experiments (a.a. 1-48), we used different purified 

 
Figure 6. Anykyrin repeat modeling of TRPC3. (a) Ada-BLAST ANK ILB measurements (embedded rps-BLAST) of the structurally resolved 
ankyrin repeats in TRPV6 (overlapping alignment output- yellow line, amino-acid conservation output- white,red). (b) Two views of the struc-
ture of TRPV6 with each ankyrin repeat labeled. (c) Ada-BLAST ANK ILB measurements (embedded rps-BLAST) of TRPC3 (overlapping 
alignment output- yellow line, amino-acid conservation output- white,red). (d) Carbon backbone model of TRPC3 (red, Ada-BLAST bounda-
ries) generated with Modeller overlayed with the carbon backbone of TRPV4 (blue). The known TRP_2 domain in TRPC3 comprises the last 
two ankyrin repeats in this model. 
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TRPC3 fragments in our in vitro studies (a.a. 40-85 and 1-
171). We observe that both of these peptides bind the PH-c 
domain of PLCγ to form an inter-molecular phosphatidylino-
sitol 4,5-bisphosphate (PIP2)-binding domain. Further, we 
demonstrated that a single mutation (F43A), which is at the 
vertex of a loop in our structural model was capable of allevi-
ating PLCγ binding to these fragments (38) (Fig 8a). Further, 
we demonstrated that mutation of R14, K16, R18, and R19 
also alleviate PIP2-binding without altering PLCγ PH-c-
binding.  In our model, these residues form a large solvent 
accessible positive patch. Based on these observations, we 
undertook new experimentation to truly determine if this 
pocket is involved in binding the PH-c of PLCγ to form a 
PIP2-binding domain. 

We first performed co-immunoprecipitation assays of myc-
tagged WT and F43A TRPC3 in HEK-293 cells +/- stimula-
tion with the muscarinic receptor agonist carbachol (CCH, 
100µM, 3 minutes). In addition to measuring the binding of 

TRPC3 with endogenous PLCγ, we also tested binding to the 
isolated PH-c domain. In the case of the latter, we have over-
expressed both WT and F43A TRPC3 with a his-tagged 
fragment of PLCγ containing the PH-c, as structurally re-
solved by Zhang and colleagues (a.a. 861-940 of rat PLCγ) 
(48). 

While we observe that while WT TRPC3 readily co-
precipitates his-tagged PH-c or endogenous PLCγ we do not 
observe co-precipitation with the F43A mutant (Fig 8b-c, 
respectively). We next altered cellular PIP2 concentrations to 
determine if PIP2 is required for this interaction using wort-
mannin and poly-L-lysine. Low concentrations of wortman-
nin (1µM) specifically inhibit phosphoinositide-3-kinase 
(PI3K) and do not deplete PIP2 levels, while high concentra-
tions (10µM) inhibit a variety of inositol kinases depleting 
cellular PIP2 (49). Poly-L-lysine works by chelating PIP2 such 
that it is not biologically available (49). We observe that both 
10µM wortmannin and poly-L-lysine block WT TRPC3 co-

 
Figure 7. Homology Model of TRPC3 ankyrin domains. Amino acids 1-265 of human TRPC3 were aligned to aa 132-384 of chicken TRPV4 
(PDB: 3JXI) with Muscle (http://www.ebi.ac.uk/Tools/muscle/). This pairwise alignment was used to make a threaded structural model using 
MODELLER. This figure shows the TRPC3 homology model colored by structural elements (magenta: Alpha-helices, yellow: Beta-sheets). Key 
binding pockets for PLC-γ�and VAMP-1 are depicted. The model showing the putative interaction between TRPC3 and VAMP-1 (PDB: 
2KOG) was generated manually in Deep View PDB viewer based on the known orientation that 2KOG exists in vesicular membranes and the 
known binding pocket for VAMP-1 in TRPC3 (aa 121-161). 
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precipitation of overexpressed PH-c or endogenous PLCγ 
while 1µM wortmannin does not (Fig 8b-c). 

We also demonstrated that the F43A mutation abolishes 
cell-surface expression of TRPC3 (23). To confirm these re-
sults, we performed immunostaining in HEK-293 cells for the 
WT and F43A channels used in this study (Fig. 8d). As ex-
pected, we observe that the WT channel is widely distributed 
throughout the cell, with regions of high concentration that 
can be observed at the cell periphery (arrow). Conversely, the 
F43A mutant appears to be completely confined to intracellu-
lar vesicles. Taken together, we suggest that a.a. 1-48 of 
TRPC3 are ankyrin repeats that interact with the PH-c of 
PLCγ to form an inter-molecular PIP2-binding domain.  

4.1 TRP_2 domain 

In our studies of the TRP_2 domain in TRPC3 we deter-
mined that mutation of S209 and S213 could increase the 
affinity of this domain for plasma-membrane lipids, although 
we did not identify residues that could eliminate lipid-
binding (23). Through inspecting our model, we identified 

two arginines (185, 188) in TRPC3 which form a solvent-
accessible positively charged patch in the extreme N-
terminus of the TRP_2 domain (Figure 9a). We wondered 
whether these residues were involved in binding to negatively 
charged plasma-membrane lipids.  

To test this hypothesis, we used purified fragments of 
TRPC3 (amino-acids 161-280) which we have previously 
demonstrated to bind to liposomes (23). Using PIP-strip© 
assays as a rapid method for assaying lipid-binding, we ob-
serve that WT peptide, and mutant peptides (R185A,  
R185A/R188A) all bind PIP-strips© and have an identical 
binding pattern (Fig 9b). 

We next tested whether full-length TRPC3 containing the 
R185A/R188A mutation was expressed in the plasma-
membrane using cell-surface biotinylation assays (Fig 9d). 
We observe that the R185A/R188A mutant is presented on 
the plasma membrane surface as well, if not better than WT 
TRPC3. However, when we tested the R185A/R188A for ac-
tivity by Fura-2 imaging, we observe that these mutations 
drastically inhibit channel function (Fig 9c). Thus, these mu-

 
Figure 8. Experimental validation of the phospholipase C-γ partial PH-domain binding to the ankyrin repeats in TRPC3. (a) Structural model of 
the first two ankyrin repeats in TRPC3. Key PLCγ binding residues discovered in (ref) are labeled. (b) Co-immunoprecipitation assays of over-
expressed full-length myc-tagged WT and F43A mutants of TRPC3 in HEK-293 cells. (left) WT TRPC3 assoaciates with endogenous PLCγ, an 
interaction that increases upon muscarinic receptor stimulation with carbachol (100µM, 3 minutes).  (right) WT TRPC3 association with 
endogenous PLCγ�requires PIP2 as when bioavailable PIP2 levels are depleted with either 10 µM wortmannin or 30 µg/ml poly-L-lysine, the 
interaction is lost. (c) Immunostaining of myc-tagged full-length WT and F43A TRPC3 expressed in HEK-293 cells. White arrows demon-
strate that WT TRPC3 is enriched near the plasma-membrane, white the F43A mutant is not. (d) Co-immunoprecipitation assays of overex-
pressed full-length myc-tagged WT and F43A mutants of TRPC3 and his-tagged PLC-γ PH-c (a.a. 861-940 of rat PLCγ) overexpressed in 
HEK-293 cells. (left) WT TRPC3 assoaciates with his-tagged PLC-γ PH-caninteraction that increases upon muscarinic receptor stimulation 
with carbachol (100 µM, 3 minutes). (right) WT TRPC3 association with with his-tagged PLCγ PH-c requires PIP2 as when bioavailable PIP2 
levels are depleted with either 10µM wortmannin or 30 µg/ml poly-L-lysine, the interaction is lost. 
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tations do not alter the known functions of the TRP_2 do-
main, although they are somehow involved in the activa-
tion/deactivation of the ion-channel. A second region 
between a.a. 240-260 of TRPC3 also has a positively charge 
patch which we are now investigating as a candidate for the 
lipid-binding activity of the TRP_2 domain (see Supple-
mental TRPC3 model). In whole, these data demonstrate that 
the information and models generated using Ada-BLAST 
provide an excellent resource for performing user-defined 
analyses toward specific research directions. 

5. Discussion 

Based on the above results, we propose that the Ada-
BLAST algorithm and applications presented in this manu-
script provide a highly adaptable user-defined interface for 
the investigation of primary amino acid sequences. This 

statement is supported by our observations that: (i) PSSM 
libraries developed for a specific protein attribute improve 
the sensitivity and specificity of rps-BLAST, (ii) variations of 
rps-BLAST that collect low-identity alignments contain in-
formation that informs protein structure/function modeling, 
(iii) modifying the format of rps-BLAST data outputs allows 
for these data to be interoperable with a plethora of high-
performance computational algorithms, and (iv) homology 
models informed by these data provide a framework to gen-
erate hypotheses which can be addressed experimentally. A 
number of broad implications can be taken from this study. 

Systems Biology requires a combination of computational 
and cellular experiments which obtain quantitative results. 
The impetus for developing Ada-BLAST was to create an 
easy-to-use interface that could enhance the information that 
could be obtained from BLAST algorithms, thereby providing 

 
Figure 9. Experimentally modeling the TRP_2 domain in TRPC3. (a) Structural model of the first two ankyrin repeats in TRPC3.  Key serines 
(S209, S213) involved in regulating lipid binding discovered in [23] are labeled, as well as two arginines (R185,R188) which we speculated to 
participate in lipid-binding based on our model. (b) PIP-strip assays (dot Western blots) performed with  bacterially purified WT and mutant 
(R185A, R185A/R188A) TRPC3 (a.a. 161-280) (SDS-PAGE Western blot).  We observe no difference in lipid-binding, refuting our specula-
tion. (c) Fura-2AM measurements made in HEK293 cells transfected with YFP alone (-control, red) or transfected with either WT (green) or 
R185A/R188A (yellow) TRPC3. Cells were acclimated first in nominally Ca2+-free medium, Ca2+ pools were released by 100 μM CCH in nom-
inally Ca2+-free medium followed by replacement with CCH and 1 mM Sr2+-containing media. (d) Western blot of biotinylated HEK293 cells 
(top) and loads (bottom) transfected with either Myc-tagged WT or R185A/R188A TRPC3 alone and stimulated with or without 100 μM 
carbachol. Input lanes, 20 μg. Anti-HO2 blot serves as an intracellular negative control for biotinylation. 
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easily accessible quantitative biological data. As the BLAST 
algorithm is one of the most popular search algorithms (i.e. 
the Google of bioinformatics), this is a strong testament to 
the utility of BLAST. Indeed, BLAST is extremely fast while 
maintaining a high-level of alignment accuracy (5, 21). By 
creating apps that allow for a novice computer user to have 
control over the key components of the rps-BLAST algorithm 
(PSSM libraries, e-value, output format), this approach allows 
the bench-scientist to “supercharge” BLAST for investigating 
protein sequences of interest. 

From a biological perspective, having multiple views of a 
given system is crucial in order to resolve the mechanism of 
that system. In Ada-BLAST, the data naturally generated by 
rps-BLAST can be formatted into both alignment and matrix 
formats; this allows for these data to be visualized in various 
ways and analyzed by a multitude of other high-performance 
algorithms, many of which are online resources. Our analysis 
of the TZ-SABmark dataset demonstrates that when these 
data are analyzed and visualized using ROC curves, hierar-
chical clustering, multiple e-values (including embedding), 
and overlapping alignments, that this multi-view provides 
confidence for the utility of fold-specific PSSM libraries. 

Similarly, when this “multi-view” approach is applied to 
ion channels, it provides models which are highly testable. 
The Ada-BLAST model for the N-terminus of TRPC3 sug-
gests that: (i) the number of ankyrin repeats were previously 
underestimated (Fig 5-6), (ii) a.a.1-260 of human TRPC3 is 
homologous to a.a.132-384 of chicken TRPV4 (~13% pair-
wise identity) (Fig 6-7), (iii) that the PH-c of PLCγ likely in-
teracts with TRPC3 through binding a soluble loop between 
ankyrin repeats 1 and 2, (iv) the membrane-fusogenic TRP_2 
domain in TRPC3 is comprised of ankyrin repeats, and (v) 
that TRPC3 likely binds VAMP via a large loop between 
ankyrin repeats 3 and 4. Our biochemical experiments con-
firm that the PH-c of PLCγ forms an inter-molecular lipid-
binding domain. Further, this interaction is required for 
channel function and that R185 and R188, which are proxi-
mal to the TRP_2 domain, do not bind lipid, but do regulate 
channel function.  

Our results also support the idea that statistical thresholds 
are often too stringent in domain detection algorithms. For 
example, rps-BLAST does not report a channel domain 
alignment in human TRPV5 channel (gi|22547180) at statis-
tical limits. In this study, we found that additional infor-
mation contained in alignments well below accepted 
statistical thresholds can be utilized to identify domain 
boundaries and secondary structural elements. Future analy-
sis on a sufficiently large data set is required to identify and 
optimize the multiple variables that can identify highly diver-
gent yet informative alignments. Nevertheless, we propose 
that there is a wealth of information below statistical values 
that can aid researchers in annotating protein struc-
ture/function.  

To these ends we recently completed the CASP9 structural 
competition (50, 51) with Ada-BLAST using a PSSM library 
constructed using the most recent SCOP structural database 

(52). We expect that the results from the CASP experiment 
will have an immediate impact on our ability to construct 
PSSM libraries of high-utility. In conclusion, we propose that 
future work aimed at (i) creating comprehensive and refined 
PSSM libraries and (ii) exploring sequence embedding at the 
level of the PSSM (COBBLER (1)) and within the query (que-
ry-embedded Ada-BLAST), may have the ability to exponen-
tially increase the functional annotation of all classes of 
proteins across taxa. 

6. Supplementary material 

Supporting Information Available: Supplemental Meth-
ods. Supplemental Figure 1. Fold recognition performance of 
Ada-BLAST with different settins given fold-specific libraries. 
Supplemental Figure 2. Characterization of alignments used 
by Ada-BLAST at e-value 0.01 and 1010 thresholds. Supple-
mental Figure 3. Comparison of Ada-BLAST dendrograms of 
e-value 0.01 and 1010 thresholds. Supplemental Figure 4-5. 
Hierarchical clustering of transmembrane containing pro-
teins with additional Ada-BLAST settings. Supplemental Fig-
ure 6. rps-BLAST analysis of 1F88. Supplemental Figure 7. 
The characterization of structural elements in 1F88. Supple-
mental Figure 8. Ada-BLAST comparison with TMHMM and 
rps-BLAST for TRPC3. Suppelemental Figure 9. Ada-BLAST 
comparison with TMHMM and rps-BLAST for TRPV5. Sup-
plemental Files. Homology models of TRPC3 a.a. 1-265 and 
a.a. 121-161 that are generated using TRPC4 and VAMP-1 as 
template structures, respectively. 

http://www.jiomics.com/index.php/jio/rt/suppFiles/33/0 
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