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The monogenean salmon fluke (Gyrodactylus salaris) is an important ectoparasitic pathogen of Atlantic salmon (Salmo salar) 
frequently occurring in Norwegian rivers. High infection rates have reduced populations of salmon parr and led to a decline of 
upstream-swimming adult fish. Thus, finding efficient measures for the eradication of the parasite is a necessity. The treatments 
that have been successful so far have the disadvantage of killing all aquatic life and require river rehabilitation and repopulation 
programs. In the search for more selective agents, chlorine at low concentrations has emerged as a suitable candidate, removing 
the flukes from the salmon without causing notable adverse consequences. However, more data regarding potential health risks 
are needed before chlorine can be applied for the large-scale disinfection of Norwegian watercourses. In the present study, we 
have therefore explored potential effects of exposing on-growing salmon to (mono)chloramine, by combined proteomic and 
metabolomic profiling of the skin mucus composition. The epidermal mucus protects fish against harmful environmental factors 
and represents a valuable and easily accessible source for monitoring the health status by analyzing excreted proteins and small 
molecules. We treated fish with 60 µg/L (Cl60) chloramine for 17 days (E17) and kept them for further 21 days (R21) in non-
chlorinated water during a recovery period. A control group (Cl0) followed the same procedure but without chloramine. Skin 
mucus was obtained before treatment following a 14-day habituation period (H0), at E17 and at R21, following a previously 
established mucus absorption protocol. The samples were analyzed by proteomic and metabolomic methods using high-
resolution mass spectrometry, and data were processed for further statistical modeling. While there were no significant 
differences between exposed and control salmon at E17, we observed a considerable time-dependent influence on the mucus 
composition in both Cl0 and Cl60 groups that were attributed to aging. However, the comparison of Cl0-R21 vs. Cl60-R21 at study 
end indicated a chloramine-dependent separation of the groups, mostly caused by proteins classifiable into the biological 
processes “cellular processes” and “metabolic processes”. Overall, the observed differences between treated fish and controls 
were small, showing that the health risk for salmon exposed to chloramine concentrations below 60 µg/L appears to be low.  

 

Keywords: Atlantic salmon; integrated omics; chloramine; metabolomics; proteomics; skin mucus  

Abstract 

1. Introduction 

Salmon fluke (Gyrodactylus salaris) is a leech-like 
freshwater ectoparasite primarily infecting Atlantic salmon 
(Salmo salar) [1]. It possesses a haptor with 16 hooks at the 
posterior end and feeds mainly on the skin and fins of 
juvenile fish. The release of digestive enzymes from the 
pharynx causes large wounds, and infestation with several 

flukes is mostly deadly [2]. The introduction of the parasite 
to Norway from imported smolt in the 1970s has led to 
catastrophic losses in wild salmon populations, which by 
2004 were wiped out in 45 Norwegian rivers [3,4].  

The dramatic development initiated an extensive G. salaris 
eradication and river rehabilitation program coordinated by 
the Norwegian Environment Agency [5]. Among the most 
used chemicals for the treatment of watercourses are the 
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plant toxin rotenone and aluminum sulfate [6]. Both are 
effective against the parasite but have the disadvantage of 
killing all aquatic life, including the salmon. Thus, arduous 
rescue measures such as wild salmon breeding and 
repopulation of cleared rivers are necessary. The search for 
more selective chemicals has identified chloramine as a 
suitable candidate. It is well documented that chlorine can 
kill pathogens at concentrations of 0.5 to 1 mg/L in water 
[7]. At the same time, chlorine levels up to 4 mg/L are 
considered safe in drinking water. Consequently, chlorine 
compounds are used, e.g., for the disinfection of drinking 
water, treatment of wastewater, and disinfection of bacteria 
and algae contaminations. Chlorine in various forms is the 
world's most commonly used disinfectant, which also has 
been utilized as an agent in aquaculture [8–10]. Experiments 
under controlled conditions in a research facility have 
shown that hypochlorite added to water at low 
concentrations between 5 to 50 µg/L was able to remove G. 
salaris from on-growing salmon without having any visible 
adverse effects on the fish [11]. This was confirmed in a 
subsequent study in river water [12]. When chlorine was 
added as (mono)chloramine, the duration of the toxic effect 
increased considerably compared to the addition as sodium 
hypochlorite [11,13]. Nevertheless, chloramines can be toxic 
to fish, and several species within the salmon family 
(Salmonidae) have been described as highly sensitive to 
chlorine [14]. However, there is wide variation in the 
reported acute toxicity concentrations, with 96 h LC50 values 
ranging from 10 to 132 µg residual chlorine/L, meaning the 
proportion of added chlorine to the water that is not 
immediately deactivated [14]. The term covers free chlorine, 
including gas, hypochlorous acid, and hypochlorite, as well 
as bound chlorine such as chloramine, which reacts more 
slowly and stays longer active. Indication of chronic toxicity 
to chlorine has been found following exposure to residual 
chlorine levels as low as 3 µg/L for 12 weeks [15]. 

The observed differences in chlorine toxicities in G. salaris 
and Atlantic salmon have made it a promising candidate for 
river treatments. Field trials are in preparation, based on 
experiences from an on-going experiment using tanks with 
circulating water from the river Glitra with added (mono)
chloramine [16]. Young salmon are exposed to different 
chlorine concentrations for varying exposure periods with 
the aim to evaluate a potential impact on fish health and 
welfare by monitoring a number of physiological 
parameters. In this context, we have explored the 
applicability of proteomic and metabolomic profiling for 
biomarkers of exposure. 

Novel technologies such as “omics” can provide insight 
related to the understanding of biological functions and 
responses to environmental agents in exposed fish [17]. 
Proteomics deals with the large-scale determination of gene 
and cellular functions directly at the protein level [18], 
whereas metabolomics can elucidate systemic perturbations 
through the analysis of low-molecular-weight metabolites, 
delivering a snapshot of the actual status of active biological 

functions [19]. Therefore, the combination of omics-
techniques appeared to be a promising tool for the 
investigation of possible consequences of chloramine 
treatment on the skin mucus composition of salmon and for 
the characterization of affected physiological pathways. Both 
techniques generate massive datasets that combined can 
deliver in-depth information about biological processes 
supporting the understanding of systems biology [20,21]. 

It was thus the aim of the present study to identify changes 
in the protein and metabolite compositions in the mucus 
layer of chloramine-exposed salmon directly after the 
treatment and after a recovery period using an “Integrated 
Omics” approach, combining proteomics and metabolomics 
data by chemometrics. 

2. Material and Methods 

2.1 Salmon husbandry 

Two-year-old salmon with average weights of 65 g and 
lengths of about 17 cm were obtained from the fish breeding 
station of the Fish Administration of Drammen City and 
County (DOFA), Norway. The fish were the progeny of wild 
salmon from the river Lierelva that were hatched and 
fostered at DOFA in tanks with water from the river Glitra, a 
tributary of Lierelva. They were fed with Nutra XP (2 mm 
pellets) extruded salmon feed (Skretting, Stavanger, Norway) 
with automatic feeders. The wild salmon was unvaccinated 
and untagged. 

The fish were treated in accordance with the Norwegian 
regulations concerning the care and use of fish in laboratory 
experimentation. The present study was part of a larger 
experiment, approved by the Norwegian Animal Research 
Authority (FOTS-ID 15598), for the elucidation of effects on 
salmon from the exposure to (mono)chloramine by 
analyzing physiological parameters in blood, physical effects 
on gills, fish behavior and possible changes in the 
composition of the skin mucus layer [16].  

2.2 Exposure of salmon to chloramine in river water  

The experiment was designed as an open system with 
continuous water flow from the river Glitra (T = 12.7°C ± 
1.3°C). The water was led into a fiberglass tank (V = 230 L) 
with overflow, ensuring a stable water supply during the trial 
period. Overflowing water was led further to two mixing 
tanks (V = 90 L), where chloramine was added to one of 
them with a peristaltic pump (Watson-Marlow 323S with a 
304MC five-channel cassette pump head, Falmouth, UK) 
within 3.5 min. The chlorinated water was passed on to the 
exposure tanks (V = 90 L, 4.8-5.2 L/min flow). In parallel, 
untreated water was used for control fish. The turbidity, 
conductivity, and temperature of the river water were 
analyzed daily. Furthermore, temperature and pH were 
measured in the exposure tanks. Total chlorine was 
determined every day in the outflow of the mixing tanks, 
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subtracting the background in the non-chlorinated control 
water. 

At the experiment start, the salmon were transferred into 
the exposure tanks (n=10/tank) and acclimated for two 
weeks. Three replicate tanks per chloramine-treated fish and 
corresponding controls were included. The fish were not fed 
during the study period. After exposure to 60 µg/L (Cl60) 
chloramine for 17 days, all fish were kept for further 21 days 
in non-chlorinated water during a recovery period (Figure 
1). 

2.3 Chloramine dosing scheme 

A stock solution containing 400 mg/L (mono)chloramine 
was prepared by dissolving 5.2 g ammonium chloride in 9 L 
desalted water, shaking, and the addition of 1 L water 
containing 23.8 mL concentrated (14 %) hypochlorite 
solution. The stock solutions were added to the Cl60 mixing 
tanks with 13.5 mL/3.5 min. It was renewed every second 
day during the first 12 days of the exposure period, and 
every day during the final five days. The chlorine 
concentration in the stock solution was analyzed daily in this 
period because it appeared that it declined faster than 
expected due to auto-degradation [16]. The actual chlorine 
level for Cl60 was thus about 40 µg/L for the first 12 days of 
the experiment, while it was adjusted to the nominal values 
for the last five days. 

The concentrations of active chlorine in the exposure 
tanks were determined as previously described [12]. Briefly, 
water samples were filtered (0.45 µm pore size), and 25 mL 
filtrate were blended with 0.15 mL phosphate buffer (0.21 M 

Na2HPO4, 0.34 M KH2PO4, 2.7 mM EDTA). Subsequently, 
N,N-diethyl-p-phenylenediamine sulphate (5.7 mM in 0.7 
mM EDTA/0.2 % H2SO4) and, after thoroughly mixing, 3 
mg solid KI were added. After further mixing, the samples 
were incubated for 1 h in the dark. Absorption differences to 
water controls at 510 nm (5 cm optical path) were used 
(Shimadzu UV1240 mini spectrophotometer, Shimadzu, 
Kyoto, Japan) to calculate chlorine levels based on a 
calibration curve of diluted chlorine standards.  

2.4 Sampling of salmon skin mucus  

Skin mucus was sampled from the fish using a 
standardized absorption method reported elsewhere [22] in 
the exposure tanks at the end of a 14-day acclimation period 
(H0), on day 17 (E17) during chlorine exposure, and on day 
21 (R21) in the recovery period (Figure 1). For proteomic 
analysis, ten fish were included at H0 (n= 10), and two 
replicates per tank and dose group were used for Cl0 and Cl60 
at E17 and R21 (n=6 fish per dose and time point) (Table 1). 
For the metabolomic analysis, four replicates per tank and 
dose were obtained for Cl0 and Cl60 at H0, E17, and R21 
(n=12 fish per dose and time point) (Table 1). 

Skin mucus was sampled after the fish had been killed with 
a blow to the head. A sterile piece of medical wipe (Kimberly
-Clark, Irving, TX, USA) sized 2.5 x 7 cm was placed for 
about 10 seconds on the left side of the fish behind the gill 
cover. The wipe was removed, rolled, and transferred into 
the upper compartment of a Spin-X® polypropylene 
centrifuge tube (0.22 µm cellulose acetate, Costar, Corning, 
NY, USA) and stored on ice until centrifugation for 10 min 

Figure 1 | Flow diagram of the experimental design of the study.  
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with 500 × g at 4 °C. The extracted mucosal fluid was stored 
at −80°C until further use. 

2.5 Determination of protein concentrations  

The total protein amount in the mucus fluid samples was 
determined by applying the Lowry assay (DC Protein Assay, 
Bio-Rad, Hercules, CA, USA). The samples were measured 
diluted 1:2 with phosphate-buffered saline (PBS) (pH 7.4), 
and the mean protein concentrations were calculated from 
all measured values falling into the calibration curve, 
ranging from 0.1–1 mg/mL bovine serum albumin (BSA) in 
PBS.  

2.6 Preparation of skin mucus samples for proteomic 
analysis  

The proteins in undiluted salmon skin mucosal fluid were 
digested in-solution [23]. Aliquots (10 µg total protein/
sample) were dried by SpeedVac centrifugation (Thermo 
Scientific, Bremen, Germany) and re-dissolved in 100 µL 
reaction buffer (50 mM NH4HCO3). The proteins were 
reduced with 5 µL 200 mM dithiothreitol (Millipore-Sigma; 
St. Louis, MO, USA) in reaction buffer for 1 h at 30°C and 
subsequently alkylated with 15 µL 200 mM iodoacetamide in 
reaction buffer for 1 h at room temperature in the dark. 
After dilution with 100 µL reaction buffer, proteins were 
digested with trypsin (Trypsin Gold mass spectrometry 
grade, Promega, Madison, WI, USA) at an enzyme/sample 
ratio of 1:30 at 37°C overnight. The samples were desalted 
using OMIX C18 10 µL clean-up tips (Agilent Technologies, 
Santa Clara, CA, USA) in accordance with the 
manufacturer’s instructions and dried by SpeedVac 
centrifugation. Peptides were re-dissolved in 20 µL 0.1 % (v/
v) formic acid, sonicated for 30 s, centrifuged for 10 min at 
13000 × g, transferred to mass spectrometry (MS) vials, and 
stored at −20°C until analysis.  

2.7 Untargeted proteomic analysis by UHPLC-nESI-HRMS  

The prepared samples were analyzed using ultra-high 
pressure liquid chromatography (Dionex Ultimate 3000 

UHPLC) coupled via a nano-electrospray ion source (nESI) 
to a Q-Exactive Hybrid Quadrupole-Orbitrap high-
resolution mass spectrometer (HRMS) (Thermo Fisher 
Scientific, Bremen, Germany) as previously described [23]. 
Peptide solution (5 μL) was injected onto a µ-precolumn 
(Acclaim PepMap100, C18, 5 µm resin, 100Å, 300 µm i.d. x 5 
mm; Thermo Fisher Scientific) and eluted in back-flush 
mode onto the analytical column (Acclaim PepMap100, 
C18, 3 μm resin, 100 Å, 75 µm i.d. x 5 cm, nanoViper; 
Thermo Scientific). Chromatographic separation was 
achieved using a binary gradient from 3% to 50% of 
acetonitrile in water (both containing 0.1% formic acid) for 
60 minutes, with 0.3 μL/min flow rate. Peptides were 
analyzed in positive ion mode applying high-energy 
collisional dissociation (HCD) fragmentation with 
normalized collision energy set to 28, acquiring one MS 
survey scan in the mass range of m/z 300–2000, followed by 
MS/MS of the ten most intense ions.  

MS data were analyzed with Proteome Discoverer 1.0 
software (Thermo Scientific) using the SEQUEST search 
engine (La Jolla, CA, USA) with the criteria enzyme name 
(trypsin), missed cleavage sites (2), precursor peptide mass 
tolerance (10 ppm), fragment mass tolerance (0.06 Da), fixed 
modifications of cysteine (carbamidomethyl) and variable 
modification (oxidation of methionine), and compared to 
entries for Atlantic salmon in the UNIPROT-database. 

2.8 Data processing and visualization of proteomics data  

The salmon skin mucus proteomics data were processed 
using Scaffold Viewer, version 4.8.9. (Proteome Software 
Inc, Portland, OR, USA). Data analysis was performed using 
a protein probability threshold of 99.0% minimum with at 
least one identified peptides per protein and a peptide 
probability threshold of 95%. The normalized total ion count 
(TIC) for each protein per sample was used semi-
quantitatively to compare protein abundances. 
Normalization was performed by adjusting the TIC sum for 
all detected proteins within a sample to the average of the 
TIC sums of all samples in the study. Venn analysis was 
performed for the comparison of treatment groups.  

PEAKS Studio Viewer version 8.5 (Bioinformatics 
Solutions, Waterloo, ON, Canada) was applied for result 
visualization based on normalized TIC filtered with a false 
discovery rate (FDR) of 1%, one unique peptide identified, 
and a mass error tolerance of 10 ppm. The filtering 
parameters for peptides were set to Quality ≥ 5, Intensity ≥ 
5E6, 2 ≥ Charge ≥ 5. Protein significance was set to ≥ 20, and 
Welch’s ANOVA was used as significance method. One 
sample in the Cl0-E17 group was defined as a reference point 
for generating a protein profile heatmap. 

2.9 Characterization of proteins by biological functions 

Functional analysis of proteins that were differentially 
expressed in the skin mucus of chloramine-treated and 

Analysis H0# E17& R21¤ Sum 

  Cl0 Cl60 Cl0 Cl60   

Proteomics (P) 10 6 6 6 6 34 

Metabolomics (M) 12 12 12 12 12 60 

Table 1 | Sampling plan for proteomic and metabolomic analysis of 
salmon skin mucus. 
#Habituation period: 3 (P) +1 or 4 (M) fish from each replicate tank 
(n=3); &Exposure period day 17: 2 (P) or 4 (M) fish from each repli-
cate tank (n=3); ¤Recovery period day 21: 2 (P) or 4 (M) fish from 
each replicate tank (n=3) . 
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control fish was performed using Gene Ontology (GO) 
(http://www.geneontology.org) employing the Panther 
classification system (http://www.pantherdb.org/) [24] after 
converting the protein names to the correct import format 
by using the UniProt tool (https://ebi14.uniprot.org/
uploadlists/). The introduction of GO removed 
redundancies and allowed connection with hierarchically 
clustered biological processes, which are allotted to specific 
identification numbers. The frequencies of the detected 
biological processes were compared between treatment 
groups.  

2.10 Untargeted metabolomics analysis using LC-HRMS 

Skin mucus samples were thawed at on ice and transferred 
to chromatography vials [22]. Quality control samples (QC) 
were prepared by pooling 5 µL aliquots from 33 samples. 
This number was a result of the limited amount of available 
mucus, which was very low (i.e., <20 µL) for several samples. 
However, the QC sample contained aliquots from all groups. 
The pooled QC sample was run periodically throughout the 
whole LC-HRMS experiment. Samples were placed 
randomly in the autosampler tray of a Vanquish Horizon 
UHPLC (Thermo Scientific), which was thermostatted to 10°
C. The UHPLC was interfaced with a Q-Exactive Hybrid 
Quadrupole-Orbitrap HRMS equipped with a heated 
electrospray interface.  

Separation was achieved by hydrophilic interaction 
chromatography (HILIC) using a zwitterionic SeQuant ZIC-
pHILIC column (Merck, Kenilworth, NJ, USA; 150 × 4.6 
mm, 5 µm). The mobile phases consisted of 20 mM 
ammonium carbonate (A, pH 8.3) and acetonitrile (B). The 
column was eluted isocratically for 1 min using 80% B, 
followed by linear gradient elution to 20% B in 29 min. After 
flushing the column with 8% B, the mobile phase 
composition was returned to the starting conditions and 
equilibrated for 9 min. The HRMS was run in positive and 
negative ion full-scan mode using fast polarity switching in 
the mass range m/z 58–870. The mass resolution was set to 
70,000 at m/z 200. The spray voltage was 2.8 and 3.2 kV 
(positive and negative mode, respectively), the transfer 
capillary temperature was 280 °C, and the sheath and 
auxiliary gas flow rates were 35 and 10 units, respectively. 
Xcalibur software version 2.3 was used for instrument 
control. 

2.11 Pre-processing of metabolomics data and quality 
control 

The raw data were converted to ABF format and then 
processed using MS-DIAL v3.5 [25]. Data in negative and 
positive mode raw files were processed separately, applying 
specific parameters (Supplementary Table 1). The resulting 
data matrix contained retention time and mass-to-charge 
ratio (RT, m/z) and the areas of detected metabolic features. 
We then evaluated the data to identify drift, which is in LC-

HRMS experiments typically corrected by modeling a cubic 
spline-regression based on the QC samples, and then 
correcting the abundances of all samples by reversing the 
modeled effect of the drift. This process was developed 
independently for each feature. We calculated the non-
parametric alternatives of the relative standard deviation and 
D-ratio [26] with a cut off of 0.2 and 0.4, respectively. In case 
of missing values, imputation was done using the Random 
Forest algorithm. All calculations were performed using the 
notame (v0.0.900) package in R [27]. Exploratory 
multivariate analyses by principal component analysis 
(PCA) of the log-transformed and Pareto-scaled values was 
performed in SIMCA-P (version 15; Umetrics AB, Umeå, 
Sweden) to visualize the total variation of the metabolite 
profiles. 

2.12 Feature clustering of the metabolomics data  

In untargeted metabolomics studies, several features can 
originate from the same metabolite, and thus, they are 
assumed to be highly correlated. Therefore, we have 
implemented the feature clustering-algorithm included in 
the notame package in the data processing workflow. The 
algorithm identifies pairs of correlated features within a 
specified retention time window and a correlation threshold 
(0.1 min and 0.90, respectively, for this study). The 
advantage of this process is not only that it facilitates the 
identification of correlated features but also generates 
cleaner datasets, reducing the amount of noise that can 
disturb the subsequent multivariate analysis.  

2.13 Statistical analysis of proteomics and metabolomics 
data, individually and merged  

Only proteins that occurred in at least 80% of the samples 
in one treatment group were included in the subsequent 
multi-omics statistical analyses. The metabolomics data were 
restricted to those samples for which proteomics 
counterparts existed. The processed proteomics and 
metabolomics datasets were log-transformed and Pareto-
scaled in SIMCA-P for multivariate analysis using 
unsupervised models (PCA) and supervised models 
(orthogonal partial least-squares-discriminant analysis 
(OPLS-DA)). 

PCA was used for an initial multivariate data analysis with 
the primary purpose of detecting potential outliers and 
identify clustering patterns. An OPLS-DA model, which has 
been shown to be a reliable tool for omics studies [28,29], 
was built for each comparison of different treatment groups 
with the aim to identify discriminating proteins or 
metabolites. The advantage of using OPLS-DA is its 
capability to decompose the data into “predictive” 
information related to the response of Y (in our study: 
exposure to chloramine) and “orthogonal” structured 
information that is uncorrelated to the response, and that 
could be associated to factors such as technical or biological 
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variation, i.e., time [30]. Thus, two types of variable 
importance-in-the-projection (VIP) values that are relevant 
for group discrimination were considered, predictive and 
orthogonal, which are related to each type of latent variables 
that comprise the model and aid in the interpretation. In 
these discriminant analyses, the default seven-round cross-
validation in the SIMCA software package was applied. The 
cross-validation analysis of variance (CV-ANOVA) was 
calculated to assess the reliability of the generated models.  

The interpretative power was improved by building S-plots 
for single OPLS-DA models and shared-and-unique 
structures (SUS)-plots for combinations of two different 
OPLS-DA models containing a similar reference group (i.e., 
model 1: Cl0-E17 vs. Cl0-R21 and model 2: Cl60-E17 vs. Cl60-
R21), using the p(corr) (a vector representing the 
correlation, hence the reliability, to chloramine exposure 
(Y)). Thus, the SUS-plots facilitated the extraction of 
relevant proteins or metabolites related to a specific model, 
allowing the identification of shared features between both 
models in either a similar or an inverse trend. For such a 
purpose, we set a relatively strict cut-off of p(corr) ≥ 0.75 for 
the specific features and ≥ 0.5 for the shared features. In the 
S-plots, we considered only values fulfilling the requirement 
p < 0.05, p(corr) ≥ 0.8, and VIP ≥ 1 as relevant. 

OPLS-DA models, S-plots, and SUS-plots were first 
generated individually for the proteomics and metabolomics 
data, resulting in the identification of non-treatment related 
features that were removed from the data sets. Subsequently, 
the proteomics and metabolomics were merged, and new 
OPLS-DA models, S-plots, and SUS-plots for the 
comparison of different treatment groups were built. 

3. Results 

3.1 Effects of chloramine treatment on the skin mucus 
proteome of Atlantic salmon  

Untargeted proteomic analysis of the skin mucus samples 
from chloramine-exposed and untreated fish resulted in the 
identification of in total 895 proteins in the five treatment 
groups (Cl0-H0, Cl0-E17, Cl60-E17, Cl0-R21, Cl60-R21) with 
the chosen probability thresholds. One sample in each of the 
groups Cl0-H0, Cl0-E17, and Cl60-E17 had to be excluded 
from the data set because of the lack of detected proteins. 
Comparison of protein occurrences between the groups by 
Venn analysis showed that differences originated mainly 
from the time spent in the experimental tanks, as 
demonstrated for the three untreated control groups (Figure 
2a). Together, Cl0-E17 and Cl0-R21 differed by 99 proteins 
from Cl0-H0, whereas only 37 proteins separated the 
controls at R21 and E17 so that the latter was used as the 
baseline for treatment comparisons. After exposure to Cl60 
for 17 days, 63 proteins were identified that were not 
detected in the untreated control Cl0-E17. Moreover, 52 of 
these proteins were also present in the mucus of the treated 
fish after the recovery period at R21 (Figure 2b). However, 
when time-dependent changes were considered as deducible 
from the comparison of Cl0-E17 to Cl0-R21, the samples of 
treated fish differed with eight proteins from the controls at 
R21 (Figure 2c).  

Visualization of the changes in a heatmap showed 58 
representative protein groups containing homologous sets, 
and groups with similar expression trend were clustered 
together (Supplementary Figure 1). Generally, relative 
protein abundances were lower at H0 than at E17 and R21, 
showing a time-dependent trend in the occurrence of most 
proteins, comparable to the result of the Venn analysis. 
Examples for this ratio are rab GDP-dissociation inhibitor 
((A0A1S3SGW5), heat shock protein 70 (A0A1S3RMM7), 
and 14-3-3 protein beta/alpha (B5XDE4) (Figure 3). 
However, a considerable number of proteins were less 
prevalent at study end, e.g., histone 1 (B9ENS2), betaine-
homocysteine methyltransferase (B5DGE7), and sciellin 
(A0A1S3NV14). Interestingly, some proteins were up- or 
down-regulated in the skin mucus of chloramine-treated fish 
at both E17 and R21 as discernable in their group profiles 
(Figure 3). Up-regulation from Cl60 exposure was observed 
for, among others, glycine-rich cell wall structural protein 
(A0A1SNVZ3) and thymosin beta-a (C1BXJ6), whereas up-
regulation was found for profilin (B5X5I8), glutathione-S-
transferase 3 (B5X779), and hemopexin (A0A1S3MVQ2). 
Several proteins showed differences in expression levels only 
for Cl60-R21. Up-regulated proteins included, e.g., 
serotransferrin (B5X2B3) and down-regulated, e.g., peptidyl-
prolyl isomerase (C0H7R0). 

 
 

Figure 2 | Comparison of protein occurrences between the groups 
using Venn diagrams for a) Cl0-E17, Cl0-R21, and Cl0-H0; b) c) Cl0-
E17, Cl60-E17, and Cl0-R21; c) Cl0-R21, Cl60-R21, and Cl0-E17. 
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3.2 Effects of chloramine treatment on the skin mucus 
metabolome of Atlantic salmon  

Pre-processing of the raw data from the mucus samples 
from chloramine-exposed and untreated fish in the five 
treatment groups (Cl0-H0, Cl0-E17, Cl60-E17, Cl0-R21, Cl60-
R21) provided 4534 features from both positive and negative 
mode. Removal of features with ≥20% CV in the QCs and 
present in less than 80% of samples of one group resulted in 
a data matrix containing 3842 metabolic features that were 
imputated, in case of missing values, and normalized in MS-
DIAL. PCA was performed in SIMCA for evaluating 
metabolite variations. The first model included the QC 
samples and technical blanks in order to compare 
instrumental variation and biological variation and to 
identify possible outliers. The QC samples clustered closely 
in the center, whereas the blanks of the scores plot 
confirming the absence of technical bias (Figure 4a). The QC 
samples were removed from the data set, and a new PCA 
was performed. It showed that the variation in the 
metabolite profiles was mostly related to changes in the 

composition over time and not to exposure to chloramine. 
The metabolite composition at H0 was markedly different 
from that at E17 and R21 (Figure 4b). 

3.3 Statistical analysis of proteomics and metabolomics data 
after chloramine exposure (E17)  

After quality assessment and restriction of the data set to 
proteins that occurred in at least 80 % of the samples in a 
treatment group, 522 proteins were submitted to further 
analysis (Supplementary Table 2). The metabolomics data set 
was reduced to samples with existing proteomics data, pre-
processed in MS-DIAL, and quality-assessed using the 
notame package. We detected 1115 features in the negative 
mode and 2373 in the positive. After data evaluation, 4% of 
the features in the negative mode were discarded due to a 
low-detection rate and 19% due to low quality (RSD and D-
ratio), whereas in the positive mode, 31% of the features 
were discarded due to low quality. A drift in the signal 
intensity was detected for 99% of the features in the negative 

Figure 3 | Group profiles of protein abundances extracted from the proteomic heatmap comparing protein up-and down regulations that are 
time-dependent (E17 vs. R21), treatment-dependent (Cl0 vs. Cl60), or relevant at study end (Cl0-R21 vs. Cl60-R21). The color codes indicate 
the relative signal strength of the protein in a sample relative to all measured proteins in the same sample and are expressed on a scale of 4 
(light red) to -4 (light green) with one of the Cl0-E17 samples as the reference point. Red color means that the protein was measured with 
high relative signal strength and green color means that relative signal strength was low compared to the reference sample. Arrows indicate 
direction of change.  
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intensity was detected for 99% of the features in the negative 
and 100% in the positive mode. The drift was corrected 
through modeling with cubic spline-regression based on the 
QC samples. When looking for clusters among the samples, 
we observed 554 connections in the negative mode and 1613 
in the positive mode. In total, we created 338 clusters of two 
or more features, leaving our final dataset with 1889 features. 
Prior to the integration of the two omics sets, explorative 
PCA models were built to identify potential outliers (data 
not shown). 

The curated data were used to build OPLS-DA models in 
SIMCA for the comparison of Cl0-E17 vs. Cl60-E17, aiming 
to identify potential differences in the proteomics and in the 
metabolomics data. However, the respective models did not 
show significant separation between the treatment groups on 
day E17 (data not shown).  

3.4 Statistical analysis of proteome and metabolome changes 
in the recovery period (E17 vs. R21)  

We built separate OPLS-DA models for the discovery of 
changes in the proteome and metabolome when comparing 
the groups Cl0-E17 vs. Cl0-R21 and Cl60-E17 vs. Cl60-R21. 
The analysis confirmed the previously detected dependency 
of protein expression and metabolite occurrence on the 
duration of the study. The models generated for Cl0-E17 vs. 
Cl0-R21 were able to discriminate between the two sampling 
time points and were significant after cross-validation 
(proteomics model: LV:1+0; R2X:0.421; R2Y:0.935; Q2:0.816; 
CV-ANOVA = 0.0144373 and metabolomics model: 
LV:1+1; R2X:0.582; R2Y:0.995; Q2:0.93, CV-ANOVA = 
0.00899519). The same was true for the chloramine-exposed 
groups Cl60-E17 vs. Cl60-R21 (proteomics model: LV:1+0; 

R2X:0.38; R2Y:0.921; Q2:0.837; CV-ANOVA = 0.000713824 
and metabolomics model: LV:1+1; R2X:0.443; R2Y:0.985; 
Q2:0.77; CV-ANOVA = 0.0404403).  

SUS-plots for the proteomics and metabolomics data were 
generated by combining the respective two OPLS-DA 
models for Cl0-E17 vs. Cl0-R21 or Cl60-E17 vs. Cl60-R21. The 
plots provided graphical presentations of the proteins and 
metabolites that were responsible for the unique changes in 
both group comparisons, and for shared changes in both the 
chloramine-treated and control groups, extending in either 
the same or the opposite direction (Supplementary Figure 
2). In the proteomic SUS-plot, we identified 165 proteins 
that changed in the same direction in both groups over time. 
Since they changed similarly in chloramine-treated and 
untreated fish, these proteins are probably related to the time 
spent in the experiment or aging of the fish, confirming the 
preceding analyses. The implicated proteins were eliminated 
from the data set to reduce the impact of aging on the 
outcome. In the metabolomics SUS-plot, 301 metabolites 
were identified that changed in the same direction in both 
treatment groups, which could be attributed to the age effect. 
They were consequently removed from the data set. 

3.5 Statistical analysis of proteome and metabolome changes 
at study end (R21)  

OPLS-DA models for Cl0-R21 vs. Cl60-R21 were created 
for both the proteomics and metabolomics data. They were 
able to discriminate between the chloramine-treated fish and 
controls and were significant after cross-validation 
(proteomics model: LV: 1+0; R2X:0.221; R2Y:0.913; Q2:0.69; 
CV-ANOVA = 0.00922 and metabolomics model: LV: 1+2; 
R2X:0.492; R2Y:0.993; Q2: 0.836, CV-ANOVA = 0.0489). 

Figure 4 | 3-D scores plot from (Pareto-scaled) principal component analysis (PCA) of metabolic features in skin mucus obtained from a) 
chloramine-treated salmon and their controls including quality control samples and technical blanks b) chloramine-treated salmon and their 
controls. H0 = pre-exposure, Cl0 = control fish, Cl60 = chloramine-exposed fish;; E17 = end of 17-day exposure period; R21 = end of 21-day 
recovery period.  
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3.6 Integration of proteomics and metabolomics data for 
evaluating changes in the skin mucus from the treatment 
with chloramine (E17; E17 vs. R21; R21) 

The curated proteomic and metabolomics data were used 
to create a merged omics dataset. New OPLS-DA models 
were built for group comparisons at E17, E17 vs. R21, and 
R21. The model for Cl0-E17 vs. Cl60-E17 indicated separation 
between the two groups but was not significant (data not 
shown). 

The two models for the comparison of Cl0-E17 vs. Cl0-R21 
and Cl60-E17 vs. Cl60-R21 were capable to discriminate 
between samples from day E17 and R21 (Cl0-E17 vs. Cl0-
R21: LV: 1+0; R2X:0.258; R2Y:0.972; Q2: 0.739; CV-ANOVA 
= 0.03464; Cl60-E17 vs. Cl60-R21: LV: 1+0; R2X:0.182; 
R2Y:0.931; Q2: 0.55; CV-ANOVA = 0.0411). We extracted 
the most relevant features using S-plots. In the plot for the 
control groups, 24 proteins and 11 metabolites were the 
most discriminant features separating between E17 and R21, 
whereas in the plot for the chloramine-treated groups, 12 
proteins and 8 metabolites were responsible for the 
differentiation (Supplementary Table 3). Interestingly, none 
of the features overlapped between the groups. 

The model comparing chloramine-treated and control fish 
at R21 was able to discriminate significantly between Cl0-
R21 vs. Cl60-R21 (LV: 1+2; R2X:0.478; R2Y:0.997; Q2: 0.869; 
CV-ANOVA = 0.02904). We extracted the most relevant 
features causing the separation by using an S-plot (Figure 5), 
which made it possible to identify 11 specific proteins and 
four metabolites (Table 2). 

3.7 Assignment of proteins to biological processes  

Relevant proteins contributing significantly to treatment 
group separation in the comparisons of Cl0-E17 vs. Cl0-R21, 
Cl60-E17 vs. Cl60-R21, and Cl0-E21 vs. Cl60-R21 were 
evaluated for their affiliation to specific biological processes 
using GO (Table 2; Supplementary Table 3). Accordingly, 

differences in the untreated controls at E17 and R21 resulted 
mainly from proteins involved in the “cell process” and 
“metabolic process” (Figure 6a). The same applied for 
samples from chloramine-treated fish at E17 and R21 
(Figure 6b), confirming the considerable influence of the 
experiment duration and fish age on protein expression and 
occurrence in the skin mucus. Comparison of Cl0-E21 vs. 
Cl60-R21 at the study end indicated a notable contribution of 
proteins connected to “biological regulation” and “cellular 
component organization or biogenesis” to the observed 
differences (Figure 6c), which might be attributable to the 
chloramine treatment. 

4. Discussion 

The chlorination of Norwegian rivers and lakes at low 
concentrations is currently considered as a promising 
alternative to the use of toxins in the efforts to fight infection 
of wild salmon with the fluke Gyrodactylus salaris [12]. First 
trials in restricted areas have shown that chlorine water 
concentrations of up to 50 µg/L effectively removed the 
parasites from the fish without causing apparent toxic effects 
[10]. Chloramine has been found to be a practicable 
precursor of active chlorine that is quickly released under 
contact with water. However, before this method can be 
applied as a large-scale measure for the recovery of 
watercourses, consequences for the salmon have to be 
studied in more detail. In this context, the present study 
contributes to the evaluation of chloramine’s suitability as a 
selective and gentle agent in the fight against the salmon 
fluke. 

Consequences of chloramine exposure for the incidence of 
oxidative stress biomarkers in the liver of rainbow trout 
(Oncorhynchus mykiss), brown trout (Salmo trutta), and 
grayling (Thymallus thymallus) have been analyzed 
previously without finding significant changes, although the 
fish had been treated with concentrations as high as 9 mg/L 
[9,31]. Another study on rainbow trout using the same high 

Figure 5 | S-plot from OPLS-DA model comparing proteomic and metabolomic features in Cl0-R21 vs. Cl60-R21 samples. We set a cut-off p < 
0.05, p(corr) ≥ 0.8, and VIP ≥ 1 for selecting a compound as relevant. 
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Figure 6 | Relevant biological processes (determined using Gene Ontology) assigned to the most relevant proteins extracted from the OPLS-
DA models comparing a) Cl0-E17 vs. Cl0-R21, b) Cl60-E17 vs. Cl60-R21, and c) Cl0-E21 vs. Cl60-R21.  

Accession 

number* 
Protein name 

Molecular 

weight [kDa] 

Sequence 

coverage#¤ [%] 

Identification 

probability¤ [%] 
vs. Cl0 

B5X6W1 Calpain small subunit 1 24.56 42.6 100 ↓ 
B5X1Q8 Leukocyte elastase inhibitor 42.88 6.6 100 ↓ 
B5DGU3 Proteasome subunit alpha type 27.36 4.1 100 ↓ 
C0H9W4 Thimet oligopeptidase 77.74 14.9 100 ↓ 
B5RI51 Barrier-to-autointegration factor 10.86 12.4 100 ↓ 
B5XFL6 Plastin-2 20.44 31.0 100 ↓ 

C7C4W8 L-plastin (Fragment) 14.54 18.2 100 ↓ 
B9EPG1 Thioredoxin 12.18 22.2 99.3 ↓ 
B5X8U9 Probable thiopurine S-methyltransferase 26.68 6.0 99.8 ↓ 
RBM8A RNA-binding protein 8A 19.89 10.9 98.5 ↓ 

B5DG91 
Apoptosis-assoc. speck-like protein contain. 

a CARD 
21.99 6.1 95.8 ↓ 

Metabolite ID number* Ion mode Retention time Molecular weight (m/z) vs. Cl0 

174_0404a19_49 neg. 19.49 174.040 ↓ 
221_0663a8_825 neg.    8.83 221.066 ↑ 

226_0837a10_694 neg. 10.69 226.084 ↓ 
477_1712a10_66 pos. 10.66 477.171 ↓ 

Table 2 | Most discriminant proteomic and metabolomic features separating Cl0-R21 vs. Cl60-R21, as identified by S-plot analysis. 
*UniProt, with ending _SALSA; #by proteomic analysis; ¤maximum in treatment group Cl60-R21; analysis with HILIC-HRMS/MS  
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chloramine concentration did not detect changes in the 
hemoglobin and hematocrit levels, but registered a small 
increase in the cardiac output, facilitating increased O2 
uptake [32]. In contrast, coho salmon (Oncorhynchus 
kisutch) exposed to 30 µl/L total residual chlorine in 
municipal wastewater mixed into seawater showed signs of 
sublethal stress as demonstrated by reduced hemoglobin and 
hematocrit concentrations [14]. The existing information on 
the effects of chlorine and chloramine on fish is thus 
relatively scarce and inconclusive, so that new knowledge is 
needed to better understand mechanisms of the 
physiological adaptation of salmon to the treatment.  

The sampling of blood or liver samples from fish is 
laborious, and for the fish, stressful or deadly. Therefore, 
skin mucus has come up as an alternative source for health 
monitoring, since its collection is minimally invasive, 
simple, and can be performed several times on the same fish 
during long-term experiments [23,33]. The composition of 
fish skin mucus has been found to be considerably 
influenced by exposure to internal or external stress factors 
[34]. Analysis of the proteins and metabolites in the mucus 
can thus give valuable information on triggered deviations 
from the normal physiological state. 

The combination of proteomics and metabolomics is a 
novel, comprehensive approach for the characterization of 
changes in the expression fingerprint of fish, which can help 
to identify main underlying processes and potentially 
identify solutions to improve viability. Recent studies have 
shown an increase in metabolomics and proteomics 
techniques for different applications in aquaculture [19,35–
37]. However, due to the complexity of the data generated, it 
requires comprehensive statistical methods and visual 
interpretation to extract biological information. 
Traditionally, omics data are comprised of thousands of 
variables derived from relatively low numbers of samples, 
which makes subsequent processing with traditional 
univariate methods problematic due to the possible 
generation of false positives. In contrast, multivariate 
analysis has proven its applicability to handle such extensive  
and multidimensional datasets. In particular, OPLS-DA 
modeling is useful for interpreting complex relationships 
between different groups of samples. This statistical method 
explains their correlated variability but considers at the same 
time also the orthogonal-structured (non-correlated) 
variation between them.  

To our knowledge, this is the first multi-omics approach 
aimed to study combined changes in the skin mucus 
proteome and metabolome of salmon that have been 
exposed to waterborne substances. We have used 
comprehensive, integrated omics analysis to reveal potential 
responses from a 17-days treatment with (mono)chloramine 
at a concentration of 60 µg/L, which was two- to threefold 
above the concentration that is intended to be applied in the 
treatment of Norwegian rivers. In this way, the importance 
of potential findings could be evaluated against the built-in 
safety margin.  

The results from the proteomic and metabolomic 
measurements were first assessed individually before the 
data were joined for a combined statistical modelling. The 
total number of detected salmon skin mucus proteins was in 
the same range as in a previous study using the same 
sampling method [21]. The initial data exploration showed 
that differences between the protein profiles of the 
experimental groups were small and mostly related to the 
“age-effect,” i.e., the duration of the study. This was 
particularly relevant for proteins that have been found to 
occur with high abundances in salmon skin mucus in a 
previous study such as, e.g., 14-3-3 protein (B5X4L8), 
enolase (B5DGQ7), malate dehydrogenase (B5XBK0), heat 
shock protein 70 (A0A1S3RMM7), and tubulin (C0HBL4) 
[21]. The few proteins separating Cl60-treated and control 
fish after the exposure (E17) and the recovery (R21) period 
included glycogenin-1 (B5XCR2), histone H3 (B5DG71), 
grancalcin (B5X3Y4), spectrin alpha (C0PUV6), thymosin 
beta-a (C1BXJ6), glutathione-S-transferase 3 (B5X779) and 
NEDD8-conjugating enzyme (C0HBK6), which are, 
respectively, involved in carbohydrate metabolism, DNA 
structure, muscle activity, and protein modifications. Their 
association, mainly with metabolic processes, may indicate 
activation by chloramine exposure, potentially in connection 
with the increased O2 blood levels [32]. Interestingly, typical 
immune response proteins appeared not to be affected by the 
Cl60-treatment, confirming the relatively good toleranceof 
low chloramine concentrations in salmon [10,12] 

The metabolic signatures in the skin mucus of chloramine-
exposed and untreated salmon did not differ significantly, as 
demonstrated by PCA analysis. However, in accordance with 
the observations made for the mucus proteome, the 
metabolite profiles showed a clear age-dependent trend. 
Moreover, an indication for separation between treated and 
control fish was visible at E21 after the recovery period, 
meaning that exposure to chloramine might lead to the 
setting of a slightly different physiological base level.  

When we subsequently combined the proteomic and 
metabolomic datasets, the integrated analysis allowed a more 
differentiated evaluation of the observed trends. Again, we 
identified shared features among treated and non-treated 
fish across time. Assuming that they were related to aging, 
and thus could be confounding factors associated incorrectly 
with chloramine exposure, we created our final models 
without this structured variation. For the identification of 
the relevant features, we compared the changes between the 
days E17 and R21 for Cl0 and Cl60 independently. Whereas 
significant differences were not identifiable by univariate 
analysis, our multivariate models showed that both groups 
experienced specific changes. The most significant models to 
achieve the discrimination between E17 and R21 were 
comprised of only a predictive component without any 
orthogonal counterpart, indicating that the correlated and 
the orthogonal variability are merged in order to maximize 
the separation between groups, which involves a risk of 
overfitting. In fact, when we added an orthogonal 
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component (data not shown), we observed that the models 
were no longer significant. Significance of the E17 vs. R21-
models for the treated and non-treated samples was thus 
probably caused by merging the variabilities. Nevertheless, 
the time-related changes are relevant because they reflect the 
growth and physiological changes of the salmon. Moreover, 
although the features contributing the most to the age effect 
in the control group were not in the top list of the 
chloramine-exposed group, they also appeared as 
discriminating factors for the latter. 

When we made a direct comparison between treated fish 
and controls at R21, proteinaceous and metabolic features 
discriminating between the groups were detectable. Several 
proteins that were present in the skin mucus of the control 
fish were not found in samples of chloramine-exposed fish 
and thus characterized the separation. Classification of these 
proteins, according to GO, showed that they were related to 
metabolic processes, supporting the above conclusion of the 
proteomics data. The OPLS-DA for Cl0-E21 vs. Cl60-R21 was 
comprised of 1 predictive + 2 orthogonal components, 
implying a high within-samples variability. The 
identification of metabolomic features by additional 
fragmentation experiments was not feasible in the present 
study, reducing the opportunities for compound annotation. 
However, the use of a novel processing tool for feature 
clustering helped us to merge similar metabolomics features, 
leading to a more compressed dataset and reducing the 
collinearity between the metabolomics datasets of the 
different experimental groups. This facilitated the 
interpretation of the metabolomics part of this study and 
allowed the group allocation and tentative labeling of several 
metabolites. Interestingly, the feature 221_0663a8_825 (m/z 
221.066; negative ion mode), which is up-regulated by 
chloramine treatment at R21, could be preliminarily 
identified as D-glycero-L-galacto-octulose. A recent report 
shows that the synthesis of this sugar may involve an 
alternative pentose phosphate pathway, and that high levels 
might contribute favorably to ROS scavenging [38]. Thus, 
higher octulose production could be a reaction of the salmon 
to the increase of ROS activity in the water and skin mucus 
from exposure to chloramine and hydrolysis and breakdown 
products. 

5. Concluding Remarks 

The safe use of a low level of chloramine for the control of 
salmon fluke infections in Norwegian watercourses has been 
investigated in a controlled exposure study. The combined 
analysis of the skin mucus proteome and metabolome 
revealed only insignificant differences between treated and 
control salmon after 17 days, and minor changes after a 21-
day recovery period. These results indicate that the health 
risk for salmon exposed to chloramine concentrations below 
60 µg/L is low. 
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