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Introduction 

Bladder cancer is the tenth most common malignancy 

worldwide, with an estimated 573,000 new cases and 213,000 

deaths reported in 2020 alone[1]. Histologically, over 90% of 

bladder cancers in developed countries are urothelial 

carcinomas arising from the transitional epithelium lining the 

urinary tract [2,3]. A crucial determinant of prognosis and 

therapeutic decision-making is the depth of tumour invasion 

at diagnosis, which classifies tumours into non–muscle-

invasive bladder cancer (NMIBC) and muscle-invasive bladder 

cancer (MIBC)[4]. While NMIBC generally carries a favourable 

prognosis and is often managed with bladder-sparing 

strategies, MIBC is associated with a significantly higher risk 

of progression, metastasis, and disease-specific mortality 

[5,6]. 

The distinction between NMIBC and MIBC is fundamentally 

histopathological, based on the degree of tumour infiltration 

into the bladder wall [7]. NMIBC includes stages Ta (non-

invasive papillary carcinoma), T1 (invasion into the lamina 

propria), and carcinoma in situ (CIS), a flat but high-grade 

lesion [8]. MIBC is defined by invasion into the muscularis 

propria (T2) or beyond (T3–T4) [9]. Accurate staging requires 

high-quality transurethral resection of bladder tumour 

(TURBT) specimens, including detrusor muscle to evaluate 

the depth of invasion [10,11]. 

In addition to morphological features, recent advances in 

molecular profiling have highlighted significant biological 

differences between NMIBC and MIBC. NMIBC is often 

determined by mutations in FGFR3, KDM6A, STAG2, and 

PIK3CA, which are typically linked with luminal differentiation 

and low-grade pathology [12]. MIBC, on the other hand, 

often carries mutations in TP53, RB1, ERBB2, and genes 

involved in DNA damage response, contributing to greater 

genomic instability and aggressive behaviour. Transcriptomic 

A comparative urinary proteomic analysis using the Total Protein Approach (TPA) revealed distinct protein abundance profiles 

between patients with muscle-invasive (MIBC) and non-muscle-invasive bladder cancer (NMIBC), suggesting potential diagnostic 

utility. Notably, several proteins, including periostin (POSTN), immunoglobulin variable regions (IGLV3-21, IGHV3-49, IGHV5-51), 

and complement regulator (C4BPB), were found at significantly higher concentrations in the urine of MIBC patients. These 

findings support their value as non-invasive indicators of tumour aggressiveness. The TPA-based urinary protein signature holds 

promise for improving early risk stratification, detecting biological features associated with invasive disease, and may inform 

treatment strategies. 

Keywords: Bladder cancer, Total protein approach, TPA, proteomics, classification, diagnostic. 

ABSTRACT 



João M. R. A. Montes et al., 2025 | Journal of Integrated Omics 

245 | 1-11:  6 

studies have further stratified MIBC into molecular subtypes: 

luminal, basal, and neuroendocrine-like, each with distinct 

therapeutic vulnerabilities and clinical outcomes13. 

While histological classification remains essential, emerging 

evidence supports using urine-based biomarkers to enhance 

diagnostic precision, monitor disease progression, and guide 

treatment strategies [14]. Urine in direct contact with the 

urothelial lining is a valuable and non-invasive source of 

tumour-derived proteins [15]. Advances in mass 

spectrometry-based proteomics have enabled the 

identification of urinary protein signatures associated with 

tumorigenesis and invasiveness. Among various strategies, 

the Total Protein Approach, TPA, offers a label-free, 

quantitative method for estimating the absolute abundance 

of proteins within complex biological samples [16,17]. TPA 

relies on normalizing mass spectrometry signal intensities of 

individual proteins to the total protein signal and their 

respective molecular weights, enabling accurate and scalable 

quantification without needing internal standards [18]. 

In this study, we applied TPA to compare the urinary 

proteome of patients with NMIBC and MIBC. Our objective 

was to identify differentially expressed proteins reflecting key 

biological processes with the goal of establishing a urinary 

biomarker panel capable of distinguishing tumour 

invasiveness and supporting non-invasive clinical decision-

making. 

Materials and Methods 

Patients’ selection 

Human mid-stream second void morning urine specimens 

were collected from patients with NMIBC and MIBC 

diagnoses confirmed by pathology examination, according to 

the study approval from the ethics board of the Central 

Lisbon Hospital Center – Hospital de São José (669/2018). 

The patients involved in the study were selected based on 

the following criteria: (a) Inclusion: clear bladder cancer 

diagnosis, and (b) Exclusion: patients with records of urinary 

cancer history, HIV or other viral infections such as Hepatitis 

B, C, organ transplant, and recent chemo/radiotherapy. The 

study population consisted of 24 patients: 12 with NMIBC (Ta 

bladder cancer stage) and 12 with MIBC (T2 or higher 

bladder cancer stages). 

Urine Sample Collection and Preparation 

Urine samples were collected in 50 mL centrifuged tubes 

containing 38 mg of boric acid, preventing bacterial growth 

[19]. Samples containing visible haematuria were not 

included in our study, with the remaining being centrifuged 

at 5000 x g for 20 min to remove cell debris, followed by 10 

mL aliquots of the resulting supernatants stored at -60 °C 

until further use. An aliquot of each urine sample (7 mL) was 

concentrated to a final volume of 0.5 uL by centrifugal 

ultrafiltration using a VivaSpin 15R (10 KDa MWCO, Sartorius) 

at 5000 x g for 20 min. The concentrated urine samples were 

then quantified by a Bradford quantification assay, using 

Bovine Serum Albumin (BSA) to perform a calibration curve. 

Protein Digestion 

Urinary proteome digestion was performed by a modified 

Filtered Aided Sample Preparation (FASP) method [20,21], as 

described by Carvalho et al. [22,23]. The total protein 

digested ranged from 25 to 50 µg being diluted in Mili-Q 

water and a solution of 1 M urea, 50 mM NaCl, 0.001% SDS, 

and 50 mM TRIS-HCl pH 8.0 performing a total volume of 

400 µL. The concentration of the resulting peptides was then 

quantified by a tryptophan emission assay [24]. 

LC-MS/MS Analysis 

LC-MS/MS analysis was performed using UltiMate 3000 ultra-

high performance liquid chromatographer from Thermo 

Scientific, coupled to Ultra High-Resolution Quadrupole Time

-of-Flight (UHR-QTOF) IMPACT HD mass spectrometer from 

Bruker Daltonics equipped with a CaptiveSpay nanoBossterTM 

using acetonitrile as a dopant. 3 µL of the sample with a total 

peptide concentration of 0.1 µg/µL were loaded onto a 

µPAC™ Trapping column and desalted for 2.7 min with 3% 

(v/v) acetonitrile (ACN) in 0.1% (v/v) aqueous formic acid 

(FAaq) at a flow rate of 15 µL/min. Then the peptides were 

separated using an analytical column (200 cm µPACTM 

PharmaFluidics) with a linear gradient at 500 nL/min (mobile 

phase A: FAaq 0.1% (v/v); mobile phase B: 99.9% (v/v) ACN 

and 0.1% (v/v) FAaq) 0-2 min from 3% to 5% of mobile phase 

B, 2-90 min from 5% to 35% of mobile phase B, 90-100 min 

35% to 85% B, 100-120 min at 85% B. Chromatographic 

separation was carried out at 35ºC. MS acquisition was set to 

MS (2 Hz) cycles, followed by MS/MS (8-32 Hz), cycle time 3.0 

seconds, active exclusion, exclude after one spectrum, release 

after 2 min. The precursor was reconsidered if its current 

intensity was 3.0 higher than the previous intensity and 

intensity threshold for fragmentation of 2500 counts. 

Bioinformatics Analysis Data Analysis and Processing 

Relative label-free quantification was carried out using 

MaxQuant software V1.6.0.16 [25]. All raw files were 

processed in a single run using default settings. Database 

searches were performed using the Andromeda search 

engine with the UniProt-SwissProt Human database as a 

reference and a database of common contaminants [26]. 

Protein intensities obtained from the LC-MS/MS data 

processed within MaxQuant software were used to perform 

the Total Protein Approach (TPA) [18]. TPA allows for 

estimating absolute protein quantities from a label-free 
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proteomics approach. Protein intensities were then used and 

transformed into TPA values using the equation presented in 

Figure 1. Subsequently, protein absolute values were 

converted to pmol of protein per mg of total protein. 

Furthermore, data processing was performed using Perseus 

V2.0.11, with default settings [27]. Briefly, protein TPA values 

were log2-transformed and statistically evaluated using a 

volcano plot based on a two-sample Student's t-test, with a 

false discovery rate (FDR) threshold of 0.05 and an S0 

parameter of 0.1. 

Results and Discussion 

As illustrated in Figure 1, midstream second-morning urine 

samples were collected from 24 patients with histologically 

confirmed diagnoses, 12 with non–muscle-invasive bladder 

cancer, NMIBC and 12 with muscle-invasive bladder cancer 

MIBC. The samples were processed and analysed using a 

standardized protocol comprising protein concentration, 

reduction, alkylation, and enzymatic digestion via a modified 

Filter-Aided Sample Preparation, FASP, method, followed by 

high-resolution LC-MS/MS analysis. Protein quantification 

was carried out using the Total Protein Approach, TPA, which 

allows for absolute, label-free measurement of protein 

abundances across all samples. This strategy enabled precise 

comparative analysis between the two clinical groups and 

facilitated the identification of protein expression patterns 

associated with tumor invasiveness. 

Figure 1 | Workflow for urinary proteome analysis. A total of 24 urine samples were collected, including 12 from patients with non–muscle-

invasive bladder cancer (NMIBC) and 12 from those with muscle-invasive bladder cancer (MIBC). Samples underwent standardised prepro-

cessing, followed by protein reduction, alkylation, and enzymatic digestion using the Filter-Aided Sample Preparation, FASP, method. The re-

sulting peptides were analysed by nano-HPLC coupled to ESI-MS/MS. Protein quantification and biomarker discovery were conducted using 

the Total Protein Approach, TPA. 
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Figure 2a presents a volcano plot comparing the urinary 

proteomes of patients with MIBC and NMIBC. The analysis 

revealed 153 and 318 proteins with higher abundance in the 

NMIBC and MIBC groups, respectively. This distinct 

proteomic separation underscores the potential of urinary 

protein profiling as a non-invasive strategy for accurately 

identifying high-risk, muscle-invasive bladder cancer at the 

time of diagnosis. 

Figure 2 | Urinary TPA levels (pmol protein/mg proteome) for potential biomarkers in patients diagnosed with NMIBC and MIBC 

urine samples. a. Volcano plot showing proteome changes in urine of NMIBC patients (n=12) and MIBC (n=12). The red and blue dots repre-

sent proteins showing statistically significant proteins upregulated and downregulated, respectively. The grey dots represent proteins that are 

not statistically significant according to a Student’s t-test (FDR 0.05 and S0 0.1). b, c, d, e and f. Variation in the TPA level of the POSTN, IGLV3-

21, IGHV3-49, IGHV5-51, and C4BPB proteins in urine samples of patients diagnosed with NMIBC and MIBC. Sens = Sensibility and Spec = 

Specificity. Red dots: TPA concentrations for MIBC patients (x̅ ± SD pmol protein/mg total proteome; n=2 technical replicates). Blue line: Aver-

age TPA concentrations for NMIBC group for POSTN, IGVL3-21, IGHV3-49, IGHV5-51 and C4BPB proteins (x̅ ± SD, pmol protein/mg proteo-

me). Concentrations were, respectively,  0.03 ± 0.02 (n= 8, max: 0.07; min: 0.003 ); 18 ± 10 (n= 12, max: 46.5; min: 6.5); 2 ± 1 (n= 10, max: 4.4 ; 

min: 0.68); 16 ± 5 (n= 12, max: 30 ; min: 8); 0.4 ± 0.4 (n= 9, max: 1.4; min: 0.05). 

The complete list of proteins is presented in Table 1, 

supplementary material, T1SM. The identification of proteins 

significantly elevated in the urine of patients with MIBC, 

compared to those with non-invasive disease, reveals 

promising biomarkers linked to tumour aggressiveness and 

local invasion. Among these, POSTN plays a pivotal role in 

extracellular matrix remodelling and epithelial-mesenchymal 

transition (EMT), which are key processes in cancer invasion 

and metastasis. The information available in the literature 

about the roles of this protein is contradictory. On the one 

hand, Sung et al. have found that high POSTN expression in 

the cancer microenvironment is correlated with poor prognosis 

in epithelial ovarian carcinoma patients, and it is also 

associated with platinum resistance [28]. In this line, Xu et al. 

have found that POSTN promotes the proliferation and 

metastasis of osteosarcoma by increasing cell survival and by 

activating the PI3K/Akt pathway [29]. On the other hand, Inoue 

et al. have found that POSTN suppresses in vivo invasiveness 

via PDK1/Akt/mTOR signalling pathway in a mouse orthotopic 

model of bladder cancer [30]. In our cohort, POSTN levels were 

significantly higher in MIBC urine samples (Figure 2b), 

supporting its utility as a urinary marker for identifying invasive 

disease. 
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Increased urinary levels of immunoglobulin variable regions, 

specifically IGLV3-21 (Figure 2c), IGHV3-49 (Figure 2d), and 

IGHV5-51 (Figure 2e) were observed in MIBC patients. These 

findings may reflect tumour-infiltrating B-cell activation or 

ectopic immunoglobulin production by tumour cells, a 

process increasingly recognised in several solid tumors [31]. 

Evidence suggests that cancer cells can also produce 

Immunoglobulins (Igs), called cancer-derived Igs. Although 

this form of Igs has the same basic structure as the Igs from B 

cells, it has some significant differences, such as limited 

sequence variation and unusual glycosylation patterns. Unlike 

B cell-derived Igs, which work to protect the body as part of 

the immune system, cancer-derived Igs help tumours grow. It 

supports cancer cells by making them more aggressive, 

helping them escape the immune system, causing 

inflammation, and encouraging platelets in the blood to stick 

together, which may help the tumour survive [31]. Our data 

aligns with these findings, and we have found that IGLV3-21, 

IGHV3-49, and IGHV5-51 can also be used as biomarkers to 

differentiate invasive from non-invasive muscle bladder 

cancer patients. 

Additionally, the detection of C4b-binding protein beta chain 

(C4BPB, Fig. 2e) adds further value to this biomarker panel. 

C4BP is a key regulator of the complement system and has a 

complex structure comprising one β-chain and seven α-

chains. These chains are mainly formed by three (in the β-

chain) and eight (in the α-chains) complement control protein 

(CCP) modules, followed by a unique carboxy-terminal region 

that allows the chains to polymerise. C4BP plays a vital role in 

immune regulation by interacting with several molecules, 

including C4b, protein S, Arp, and heparin [32,33]. 

Upregulation of complement inhibitors like C4BPB by tumour 

cells is thought to promote immune evasion and protect 

against complement-mediated cytotoxicity. Its 

overexpression in urine from invasive cases suggests active 

immune regulatory mechanisms contributing to tumour 

survival and stromal invasion. 

Taken together, the increased urinary abundance of POSTN, 

IGHV segments, and C4BPB in invasive bladder cancer points 

to a multi-pathway signature encompassing ECM 

remodelling, immune modulation, and B-cell activity. This 

molecular profile holds strong potential for development into 

a non-invasive biomarker panel for identifying high-risk 

bladder cancer cases and guiding prognosis or treatment 

stratification [34]. 

Conclusion 

This study demonstrates that the Total Protein Approach can 

effectively uncover distinct urinary proteomic patterns that 

differentiate NMIBC from MIBC. We identified 471 proteins 

with differential abundance through absolute, label-free 

quantification, several of which emerged as promising 

candidates for non-invasive biomarkers indicative of tumour 

invasiveness. Our findings support urine proteomics, 

specifically the TPA, as a scalable and therapeutically relevant 

method for identifying the molecular hallmarks of bladder 

cancer invasiveness. This study adds to the developing field 

of liquid biopsies by providing a promising, non-invasive 

technique for early risk classification, long-term disease 

monitoring, and potentially guiding therapy decisions. Future 

validation in larger, independent cohorts will be required to 

transfer this proteomic signature into routine clinical 

application. 
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